Innate Immune Pathways in Atherosclerosis-From Signaling to Long-Term Epigenetic Reprogramming.

Cells

Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), 80539 Munich, Germany.

Published: September 2023

Innate immune pathways play a crucial role in the development of atherosclerosis, from sensing initial danger signals to the long-term reprogramming of immune cells. Despite the success of lipid-lowering therapy, anti-hypertensive medications, and other measures in reducing complications associated with atherosclerosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. Consequently, there is an urgent need to devise novel preventive and therapeutic strategies to alleviate the global burden of CVD. Extensive experimental research and epidemiological studies have demonstrated the dominant role of innate immune mechanisms in the progression of atherosclerosis. Recently, landmark trials including CANTOS, COLCOT, and LoDoCo2 have provided solid evidence demonstrating that targeting innate immune pathways can effectively reduce the risk of CVD. These groundbreaking trials mark a significant paradigm shift in the field and open new avenues for atheroprotective treatments. It is therefore crucial to comprehend the intricate interplay between innate immune pathways and atherosclerosis for the development of targeted therapeutic interventions. Additionally, unraveling the mechanisms underlying long-term reprogramming may offer novel strategies to reverse the pro-inflammatory phenotype of immune cells and restore immune homeostasis in atherosclerosis. In this review, we present an overview of the innate immune pathways implicated in atherosclerosis, with a specific focus on the signaling pathways driving chronic inflammation in atherosclerosis and the long-term reprogramming of immune cells within atherosclerotic plaque. Elucidating the molecular mechanisms governing these processes presents exciting opportunities for the development of a new class of immunotherapeutic approaches aimed at reducing inflammation and promoting plaque stability. By addressing these aspects, we can potentially revolutionize the management of atherosclerosis and its associated cardiovascular complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571887PMC
http://dx.doi.org/10.3390/cells12192359DOI Listing

Publication Analysis

Top Keywords

innate immune
24
immune pathways
20
long-term reprogramming
12
immune cells
12
immune
9
atherosclerosis
8
reprogramming immune
8
innate
6
pathways
6
pathways atherosclerosis-from
4

Similar Publications

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

This study examined the energy-dependent physiological responses, including stress, innate immune, and antioxidant systems, as well as indicators of energy mobilization, in pacu (Piaractus mesopotamicus) exposed to intermittent cold, aiming to assess the correlations between these responses. The fish were acclimated to 28 °C, divided into two groups, a control group maintained at 28 °C, and another exposed to 16 °C for two 24 h periods with a 5-day interval between them. The fish were sampled at six time points: baseline (after acclimatization to 28 °C), 24 h after the 1st exposure to 16 °C, after 5 days of recovery at 28 °C, 24 h after the 2nd exposure to 16 °C, and after 24 and 48 h of recovery at 28 °C.

View Article and Find Full Text PDF

Piezo1 Enhances Macrophage Phagocytosis and Pyrin Activation to Ameliorate Fungal Keratitis.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Fungal keratitis (FK) remains a treatment challenge, necessitating new therapeutic targets. Piezo1, a mechanosensitive ion channel, regulates calcium signaling and immune cell function. This study investigates its role in macrophage-mediated antifungal responses in FK.

View Article and Find Full Text PDF

is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!