Objective: To investigate the clinical utility of multi-parameter MRI-based radiomics nomogram for predicting telomerase reverse transcriptase (TERT) promoter mutation status and prognosis in adult glioblastoma (GBM).
Methods: We retrospectively analyzed MRI and pathological data of 152 GBM patients. A total of 2,832 radiomics features were extracted and filtered from preoperative MRI images. A radiomics nomogram was created on the basis of radiomics signature (rad-score) and clinical traits. The performance of the nomogram in TERT mutation identification was assessed using receiver operating characteristic (ROC) curve, calibration curves, and clinical decision curves. Pathologically confirmed TERT mutations and risk score-based TERT mutations were employed to assess patient prognosis, respectively.
Results: The random forest (RF) algorithm outperformed the other two algorithms, yielding the best diagnostic efficacy in differentiating TERT mutations, with area under the curve (AUC) values of 0.892 (95% CI: 0.828-0.956) and 0.824 (95% CI: 0.677-0.971) in the training set and validation sets, respectively. Furthermore, the predictive power of the radiomics nomogram constructed with the rad-score and clinical variables reached 0.916 (95%CI: 0.864, 0.968) in the training set and 0.880 (95%CI: 0.743, 1) in the validation set. Calibration curve and decision curve analysis findings further uphold the clinical application value of the radiomics nomogram. The overall survival of the high-risk subgroup was significantly shorter than that of the low-risk subgroup, which was consistent with the results of the pathologically confirmed TERT mutation group.
Conclusion: The radiomics nomogram could non-invasively provide promising insights for predicting TERT mutations and prognosis in GBM patients with excellent identification and calibration abilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565857 | PMC |
http://dx.doi.org/10.3389/fneur.2023.1266658 | DOI Listing |
Front Oncol
November 2024
Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
Purpose: This study aimed to develop and validate a model for accurately assessing the risk of distant metastases in patients with gastric cancer (GC).
Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91) with GC were retrospectively collected. Relevant clinical predictors were determined through the application of univariate and multivariate logistic regression analyses.
Front Oncol
December 2024
Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.
Objectives: The accurate assessment of lymph node metastasis (LNM) can facilitate clinical decision-making on radiotherapy or radical hysterectomy (RH) in cervical adenocarcinoma (AC)/adenosquamous carcinoma (ASC). This study aims to develop a deep learning radiomics nomogram (DLRN) to preoperatively evaluate LNM in cervical AC/ASC.
Materials And Methods: A total of 652 patients from a multicenter were enrolled and randomly allocated into primary, internal, and external validation cohorts.
Acad Radiol
December 2024
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China (B.W., X.H., Z.Z., Z.L., S.L.). Electronic address:
Rationale And Objectives: To develop and validate a radiomics signature, utilizing baseline and restaging CT, for preoperatively predicting progression-free survival (PFS) after neoadjuvant chemotherapy (NAC) in locally advanced gastric cancer (LAGC).
Methods: A total of 316 patients with LAGC who received NAC followed by gastrectomy were retrospectively included in this single-center study; these patients were split into two cohorts, one for training (n = 243) and the other for validation (n = 73), based on the different districts of our hospital. A total of 1316 radiomics features were extracted from the volume of interest of the gastric-cancer lesion on venous phase CT images.
Acad Radiol
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:
Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).
Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).
Eur J Radiol
December 2024
Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China. Electronic address:
Purpose: Microvascular invasion (MVI) serves as a significant predictor of poor prognosis in intrahepatic cholangiocarcinoma (ICC). This study aims to establish a comprehensive model utilizing MR radiomics for preoperative MVI status stratification and outcome prediction in ICC patients.
Materials And Methods: A total of 249 ICC patients were randomly assigned to training and validation cohorts (174:75), along with a time-independent test cohort consisting of 47 ICC patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!