Accumulating evidence shows that Schwann cells' (SCs) death caused by high glucose (HG) is involved in the pathological process of diabetic peripheral neuropathy (DPN). Ferroptosis is a novel form of regulatory cell death driven by iron-dependent lipid peroxidation. However, it is not clear whether ferroptosis is involved in the death process of SCs induced by HG. The expression of ferroptosis-related indicators in the serum of DPN patients was detected by ELISA. Subsequently, using cell counting kit‑8, western blot, real-time PCR, and Ki-67 staining, we investigated the effects of HG on the ferroptosis of SCs and initially explored the underlying mechanism. The results showed that the serum levels of glutathione peroxidase 4 (GPX4) and glutathione in patients with DPN decreased, while malondialdehyde levels increased significantly. Then, we observed that erastin and HG induced ferroptosis in SCs, resulting in the decrease in cell activity and the expression level of GPX4 and SLC7A11, which could be effectively reversed by the ferroptosis inhibitor Fer-1. Mechanistically, HG induced ferroptosis in SCs by inhibiting the NRF2 signaling pathway. Our results showed that ferroptosis was involved in the death process of SCs induced by HG. Inhibition of ferroptosis in SCs might create a new avenue for the treatment of DPN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566555 | PMC |
http://dx.doi.org/10.1515/med-2023-0809 | DOI Listing |
Front Endocrinol (Lausanne)
August 2024
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN.
View Article and Find Full Text PDFRedox Biol
September 2024
Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria. Electronic address:
Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC ≥ 0.
View Article and Find Full Text PDFToxicology
August 2024
Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China. Electronic address:
Nat Commun
May 2024
Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Therapeutic resistance represents a bottleneck to treatment in advanced gastric cancer (GC). Ferroptosis is an iron-dependent form of non-apoptotic cell death and is associated with anti-cancer therapeutic efficacy. Further investigations are required to clarify the underlying mechanisms.
View Article and Find Full Text PDFEnviron Toxicol
March 2024
Department of Oncology, Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China.
Background: Bortezomib (BTZ) is a commonly used antitumor drug, but its peripheral neuropathy side effect poses a limitation on its dosage. Evodiamine (EVO) exhibits various biological activities, including antioxidant, anti-inflammatory, and anticancer effects. The purpose of this investigation is to confirm the impact of EVO on BTZ-induced peripheral neurotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!