A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a simple model to predict functionally significant coronary artery disease in Chinese populations: A two-center retrospective study. | LitMetric

Objectives: This study sought to derive and validate a simple model combining traditional clinical risk factors with biomarkers and imaging indicators easily obtained from routine preoperative examinations to predict functionally significant coronary artery disease (CAD) in Chinese populations.

Methods: We developed five models from a derivation cohort of 320 patients retrospective collected. In the derivation cohort, we assessed each model discrimination using the area under the receiver operating characteristic curve (AUC), reclassification using the integrated discrimination improvement (IDI) and net reclassification improvement (NRI), calibration using the Hosmer-Lemeshow test, and clinical benefit using decision curve analysis (DCA) to derive the optimal model. The optimal model was internally validated by bootstrapping, and external validation was performed in another cohort including 96 patients.

Results: The optimal model including 5 predictors (age, sex, hyperlipidemia, hs-cTnI and LVEF) achieved an AUC of 0.807 with positive NRI and IDI in the derivation cohort. Moreover, the Hosmer-Lemeshow test showed a good fit, and the DCA demonstrated good clinical net benefit. The C-statistic calculated by bootstrapping internal validation was 0.798, and the calibration curve showed adequate calibration (Brier score = 0.179). In the external validation cohort, the optimal model performance was acceptable (AUC = 0.704; Brier score = 0.20). Finally, a nomogram based on this model was constructed to facilitate its use in clinical practice.

Conclusions: A simple model combined clinical risk factors with hs-cTnI and LVEF improving the prediction of functionally significant CAD in Chinese populations. This attractive model may be a choice for clinicians to risk stratification for CAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565692PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e20643DOI Listing

Publication Analysis

Top Keywords

optimal model
16
simple model
12
derivation cohort
12
model
10
predict functionally
8
functionally coronary
8
coronary artery
8
artery disease
8
chinese populations
8
clinical risk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!