The efficacy of low-carbohydrate, high-fat diets, such as ketogenic diets, for cancer patients is of research interest. We previously demonstrated the efficacy of the ketogenic diet in a case study in which medium-chain triglycerides (MCTs) or MCT-containing formula (ketogenic formula) was used as a supplement to increase blood ketone bodies. However, little is known about the amounts needed to induce ketogenic effects and about the usefulness of monitoring of breath acetone. To investigate the pharmacokinetics of MCTs and their metabolites, blood ketone bodies and breath acetone, 24 healthy subjects received one of four single oral doses of the ketogenic formula (equivalent to 0, 10, 20, and 30 g of MCTs) under fasting conditions. Total blood ketone bodies, β-hydroxybutyrate, octanoic acid, and decanoic acid were increased in a dose-dependent manner. The ketogenic effect was considered to depend on octanoic and decanoic acids, because a positive correlation was observed between them. A strong positive correlation was also observed between total serum ketone bodies and breath acetone at each time points. Therefore, monitoring breath acetone levels seems a less invasive method to predict blood concentrations of ketone bodies during ketogenic diet therapy. https://rctportal.niph.go.jp/en/detail?trial_id=UMIN000032634, UMIN-CTR UMIN000032634.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566634 | PMC |
http://dx.doi.org/10.3389/fnut.2023.1224740 | DOI Listing |
ACS Sens
January 2025
Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy.
Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.
View Article and Find Full Text PDFAnalyst
January 2025
Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, = 340 nm, = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India.
Human breath gas analysis is a noninvasive disease diagnostic approach used to identify different pathological conditions in the human body. Monitoring breath acetone (CHO) and ammonia (NH) as biomarkers is vital in diagnosing diabetes mellitus and liver disorders, respectively. In this article, the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique is proposed and demonstrated for measuring CHO and NH in human exhaled breath samples.
View Article and Find Full Text PDFACS Sens
December 2024
Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea.
The increasing prevalence of obesity and metabolic disorders has created a significant demand for personalized devices that can effectively monitor fat metabolism. In this study, we developed an advanced breath analyzer system designed to provide real-time monitoring of exercise-induced fat burning by analyzing volatile organic compounds (VOCs) present in both oral and alveolar breath. Acetone in exhaled breath and β-hydroxybutyric acid (BOHB) in the blood are both biomarkers closely linked to the metabolic fat burning process occurring in the liver, particularly after exercise.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada.
MXene has garnered growing interest in the field of electrochemistry, thanks to its unique electrical and surface characteristics. Nonetheless, significant challenges persist in realizing its full potential in chemoresistive sensing applications. In this study, a novel unidirectional freeze-casting approach for fabricating a Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-facilitated vertically aligned MXene-based aerogel with enhanced chemoresistive sensing properties was introduced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!