Over the past few decades, there has been a growing concern regarding the fate and transport of pharmaceuticals, particularly antibiotics, as emerging contaminants in the environment. It has been proposed that the presence of antibiotics at concentrations typically found in wastewater can impact the dynamics of bacterial populations and facilitate the spread of antibiotic resistance. The efficiency of currently-used wastewater treatment technologies in eliminating pharmaceuticals is often insufficient, resulting in the release of low concentrations of these compounds into the environment. In this study, we addressed these challenges by evaluating how different influent ibuprofen (IBU) concentrations influenced the efficiency of a laboratory-scale, integrated constructed wetland-microbial fuel cell (CW-MFC) system seeded with , in terms of organic matter removal, electricity generation, and change of bacterial community structure compared to unplanted, sediment MFC (S-MFC) and abiotic S-MFC (AS-MFC). We observed that the addition of IBU (5 mg L) resulted in a notable decrease in chemical oxygen demand (COD) and electricity generation, suggesting that high influent IBU concentrations caused partial inhibition for the electroactive microbial community due to its complexity and aromaticity. However, CW-MFC could recover from IBU inhibition after an acclimation period compared to unplanted S-MFC, even though the influent IBU level was increased up to 20 mg L, suggesting that plants in CW-MFCs have a beneficial role in relieving the inhibition of anode respiration due to the presence of high levels of IBU; thus, promoting the metabolic activity of the electroactive microbial community. Similarly, IBU removal efficiency for CW-MFC (, 49-62%) was much higher compared to SMFC (, 29-42%), and AS-MFC (, 20-22%) during all experimental phases. In addition, our high throughput sequencing revealed that the high performance of CW-MFCs compared to S-MFC was associated with increasing the relative abundances of several microbial groups that are closely affiliated with anode respiration and organic matter fermentation. In summary, our results show that the CW-MFC system demonstrates suitability for high removal efficiency of IBU and effective electricity generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566547 | PMC |
http://dx.doi.org/10.1039/d3ra05729a | DOI Listing |
Electrophoresis
January 2025
Institute of Forensic Science, Fudan University, Shanghai, P. R. China.
The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
Invasive alien species such as freshwater snails have significantly affected the food, environment, and the health of humans and animals, which have unfortunately received insufficient attention. To facilitate the study of viromes in snail species, we compared the enrichment effect of cesium chloride (CsCl) and sucrose density gradient ultracentrifugations in the recovery of diverse viruses in Pomacea canaliculata and Achatina fulica. First, we showed that CsCl-based ultracentrifugation enriched more virus contigs and reduced the nucleic acid background of the Pomacea canaliculata and was thus beneficial for virus recovery.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore.
Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.
View Article and Find Full Text PDFCommun Biol
January 2025
College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
Hibernation is a necessary means for animals to maintain survival while coping with low temperatures and food shortages. While most studies have largely focused on mammalian hibernation, its reptilian equivalent has been less studied. In order to provide insights into the energy metabolism and potential microbial regulatory mechanisms in hibernating snakes, the serum, liver, gut content samples were measured by multi-omic methods.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
Background: Seed banks are a vital resource for preserving plant species diversity globally. However, seedling establishment and survival rates from banked seeds can be poor. Despite a growing appreciation for the role of seed-associated microbiota in supporting seed quality and plant health, our understanding of the effects of conventional seed banking processes on seed microbiomes remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!