Like the previously reported potassium-based system, rubidium and cesium reduction of [{SiN}AlI] ({SiN} = {CHSiMeNDipp}) with the heavier alkali metals [M = Rb and Cs] provides dimeric group 1 alumanyl derivatives, [{SiN}AlM]. In contrast, similar treatment with sodium results in over-reduction and incorporation of a formal equivalent of [{SiN}Na] into the resultant sodium alumanyl species. The dimeric K, Rb, and Cs compounds display a variable efficacy toward the C-H oxidative addition of arene C-H bonds at elevated temperatures (Cs > Rb > K, 110 °C) to yield (hydrido)(organo)aluminate species. Consistent with the synthetic experimental observations, computational (DFT) assessment of the benzene C-H activation indicates that rate-determining attack of the Al(I) nucleophile within the dimeric species is facilitated by π-engagement of the arene with the electrophilic M cation, which becomes increasingly favorable as group 1 is descended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565898PMC
http://dx.doi.org/10.1021/acs.organomet.3c00323DOI Listing

Publication Analysis

Top Keywords

heavier alkali
8
alkali metals
8
c-h activation
8
seven-membered cyclic
4
cyclic diamidoalumanyls
4
diamidoalumanyls heavier
4
metals structures
4
c-h
4
structures c-h
4
activation arenes
4

Similar Publications

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

While planar tetracoordinate (pt) centers have been extensively explored from carbon to other octal-row elements or their heavier analogs, their counterparts involving alkali (A) and alkaline-earth metals (Ae) remain elusive due to the large atomic radius and absence of p orbitals. In this work, we found six hitherto unknown anionic ptA (A4A-) and neutral ptAe (A4Ae) centers through an extensive exploration of potential energy surfaces. The D4h-symmetry ptBe structures in Li4Be and Na4Be emerge as the lowest-energy configurations, and all the other ptA/ptAe structures are higher in energy or saddle points.

View Article and Find Full Text PDF

Diverse Multinuclear Alkali Metallated (Li, Na, K, Rb, Cs) Family of the 1,3,5-tris-2-aminopyridyl-2,4,6-triethylbenzene Framework.

Chemistry

December 2024

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, E-28805, Spain.

Literature on Group One organoelement chemistry is dominated by lithium, though sodium and potassium also feature prominently, whereas rubidium and caesium are rarely mentioned. With recent breakthroughs hinting that organoelement compounds of these two heavier metals can perform better than their lighter congeners in particular applications, important advantages could be missed unless complete sets of alkali metals are included in studies. Here, we report the synthesis and characterisation of a complete set of multi-alkali-metallated molecular compounds of the 1,3,5-tris[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzene framework.

View Article and Find Full Text PDF

The present study is the first report on the formation of alkali/alkaline earth metal ion-heavier borazine analogue complexes via cation-lone pair interaction. Density functional calculations are performed in scrutinizing the complex formation between alkali (Li, Na, K)/alkaline earth (Be, Mg, Ca) metal ions and heavier borazine analogues (HBA) viz. BPH, AlNH, AlPH, AlAsH, and GaPH.

View Article and Find Full Text PDF
Article Synopsis
  • Thin dielectric layers are essential in technologies like capacitors and solar cells, and this study focuses on creating openings in these layers using a specific technique involving alkali metal salts.
  • The process relies on having excess methyl groups, selenium, and alkali metals, along with a minimum annealing temperature to facilitate the formation of nano- and micron-sized openings.
  • The research illustrates that heavier alkali halide salts allow for this process to occur at lower temperatures, presenting a thermodynamic explanation that could enhance the efficiency of applications in photovoltaics and MEMS.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!