Scanning probe lithography (SPL) is a promising technology to fabricate high-resolution, customized and cost-effective features at the nanoscale. However, the quality of nano-fabrication, particularly the critical dimension, is significantly influenced by various SPL fabrication techniques and their corresponding process parameters. Meanwhile, the identification and measurement of nano-fabrication features are very time-consuming and subjective. To tackle these challenges, we propose a novel framework for process parameter optimization and feature segmentation of SPL via machine learning (ML). Different from traditional SPL techniques that rely on manual labeling-based experimental methods, the proposed framework intelligently extracts reliable and global information for statistical analysis to fine-tune and optimize process parameters. Based on the proposed framework, we realized the processing of smaller critical dimensions through the optimization of process parameters, and performed direct-write nano-lithography on a large scale. Furthermore, data-driven feature extraction and analysis could potentially provide guidance for other characterization methods and fabrication quality optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564742 | PMC |
http://dx.doi.org/10.1038/s41378-023-00587-z | DOI Listing |
ACS Appl Mater Interfaces
March 2025
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
The relationship between the structure and function of condensed matter is complex and changeable, which is especially suitable for combination with machine learning to quickly obtain optimized experimental conditions. However, little research has been done on the effect of temperature on condensed matter and how it affects device performance because the difference between the in situ physical property parameters (which are lowered by the surface tension and mixing entropy) and the basic parameters of the bulk makes accurate AI predictions difficult. In this work, P3HT/ITIC was chosen as the donor/acceptor material for the active layer of organic phototransistors (OPTs).
View Article and Find Full Text PDFJ Phys Chem A
March 2025
State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
Identifying atomic-level mechanisms in elemental chemical reactions is crucial for understanding complex reaction processes. This study focuses on the typical multichannel H + NHCl reaction, which plays a significant role in environmental science. High-level ab initio calculations determined seven distinct reaction pathways, leading to three product channels: H + NHCl, HCl + NH, and Cl + NH.
View Article and Find Full Text PDFACS Nano
March 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea.
Electron beams evolved as important tools for modern technologies that construct and analyze nanoscale architectures. While electron-matter interactions at atomic and macro scales are well-studied, a knowledge gap persists at the molecular to nano level─the scale most relevant to the latest technologies. Here, we employ liquid-phase transmission electron microscopy supported by density functional theory calculations and a mathematical random search algorithm to rationalize and quantify electron beam-induced processes at the molecular level.
View Article and Find Full Text PDFLangmuir
March 2025
School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
Inspired by the "Salvinia effect", a novel method for fabricating a magneto-responsive superhydrophobic surface coated with a cluster-distributed cilia array (CC-MRSS) was reported. This surface features a magnetically self-assembled nonuniform microcilia array and demonstrates exceptional microdroplet hydrophobicity, magnetic-responsive wettability, and corrosion resistance. The fabrication process involved mixing polydimethylsiloxane (PDMS) and carbonyl iron powders (CIPs), followed by dividing the mixture into two parts.
View Article and Find Full Text PDFJ Food Prot
March 2025
Human Foods Program, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740 USA.
Microbiological sampling and testing are widely utilized in food safety risk management. We developed risk assessments to quantify the impact of various sampling plans on the risk of invasive listeriosis to consumers. We used the FDA-iRISK® tool and adapted available process, consumption, and dose response modules of published L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!