Genomic selection to improve husk tightness based on genomic molecular markers in maize.

Front Plant Sci

Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.

Published: September 2023

Introduction: The husk tightness (HTI) in maize plays a crucial role in regulating the water content of ears during the maturity stage, thereby influencing the quality of mechanical grain harvesting in China. Genomic selection (GS), which employs molecular markers, offers a promising approach for identifying and selecting inbred lines with the desired HTI trait in maize breeding. However, the effectiveness of GS is contingent upon various factors, including the genetic architecture of breeding populations, sequencing platforms, and statistical models.

Methods: An association panel of maize inbred lines was grown across three sites over two years, divided into four subgroups. GS analysis for HTI prediction was performed using marker data from three sequencing platforms and six marker densities with six statistical methods.

Results: The findings indicate that a loosely attached husk can aid in the dissipation of water from kernels in temperate maize germplasms across most environments but not nessarily for tropical-origin maize. Considering the balance between GS prediction accuracy and breeding cost, the optimal prediction strategy is the rrBLUP model, the 50K sequencing platform, a 30% proportion of the test population, and a marker density of r2=0.1. Additionally, selecting a specific SS subgroup for sampling the testing set significantly enhances the predictive capacity for husk tightness.

Discussion: The determination of the optimal GS prediction strategy for HTI provides an economically feasible reference for the practice of molecular breeding. It also serves as a reference method for GS breeding of other agronomic traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566295PMC
http://dx.doi.org/10.3389/fpls.2023.1252298DOI Listing

Publication Analysis

Top Keywords

genomic selection
8
husk tightness
8
molecular markers
8
inbred lines
8
sequencing platforms
8
optimal prediction
8
prediction strategy
8
maize
6
breeding
5
selection improve
4

Similar Publications

We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.

View Article and Find Full Text PDF

TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.

View Article and Find Full Text PDF

Lactoferrin conjugated radicicol nanoparticles enhanced drug delivery and cytotoxicity in prostate cancer cells.

Eur J Pharmacol

January 2025

School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:

Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!