Flexible perovskite solar cells (f-PSCs) as a promising power source have grabbed surging attention from academia and industry specialists by integrating with different wearable and portable electronics. With the development of low-temperature solution preparation technology and the application of different engineering strategies, the power conversion efficiency of f-PSCs has approached 24%. Due to the inherent properties and application scenarios of f-PSCs, the study of strain in these devices is recognized as one of the key factors in obtaining ideal devices and promoting commercialization. The strains mainly from the change of bond and lattice volume can promote phase transformation, induce decomposition of perovskite film, decrease mechanical stability, etc. However, the effect of strain on the performance of f-PSCs has not been systematically summarized yet. Herein, the sources of strain, evaluation methods, impacts on f-PSCs, and the engineering strategies to modulate strain are summarized. Furthermore, the problems and future challenges in this regard are raised, and solutions and outlooks are offered. This review is dedicated to summarizing and enhancing the research into the strain of f-PSCs to provide some new insights that can further improve the optoelectronic performance and stability of flexible devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724416 | PMC |
http://dx.doi.org/10.1002/advs.202304733 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
City University of Hong Kong, Chemistry, HONG KONG.
Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.
View Article and Find Full Text PDFNanomicro Lett
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.
Flexible perovskite solar cells (FPSCs) are a promising emerging photovoltaic technology, with certified power conversion efficiencies reaching 24.9 %. However, the frequent occurrence of grain fractures and interface delamination raises concerns about their ability to endure the mechanical stresses caused by temperature fluctuations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350116, China.
Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!