Commercial aquaculture production of channel catfish (Ictalurus punctatus) occurs in shallow ponds with daily cycling of dissolved oxygen concentration ranging from supersaturation to severe hypoxia. Once daily minimum dissolved oxygen concentration falls below 3.0 mg O/L, channel catfish have a reduced appetite, leading to reduced growth rates. In other fishes, upregulation of the neuropeptides corticotropin-releasing factor (CRF) and urotensin I (UI) have been implicated as initiating the mechanism responsible for decreasing appetite once an environmental stressor is detected. Channel catfish maintained at 27 °C in aquaria were subjected to varying durations and patterns of hypoxia (1.75 ± 0.07 mg O/L) to evaluate underlying physiological responses to hypoxia and determine if hypothalamic CRF and UI are responsible for hypoxia-induced anorexia in channel catfish. During a short exposure to hypoxia (12 h), venous PO was significantly lower within 6 h and was coupled with an increase of hematocrit and decrease of blood osmolality, yet all responses reversed within 12 h after returning to normoxia. When this pattern of hypoxia and normoxia was repeated cyclically for 5 days, these physiological responses repeated daily. Extended periods of hypoxia (5 days) resulted in similar hematological responses, which did not recover to baseline values during the hypoxia exposure. This study did not find a significant change in hypothalamic transcription of CRF and UI during hypoxia challenges but did identify multiple physiological adaptive responses that work together to reduce the severity of experimentally induced hypoxia in channel catfish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-023-01521-5 | DOI Listing |
Microbiol Resour Announc
December 2024
Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan.
Here, we report the complete genome sequence of sp. strain KCF3-3, isolated from the body surface of channel catfish, . The assembly revealed a chromosome size of 5,623,437 bp with an estimated 4,939 open reading frames.
View Article and Find Full Text PDFJ Fish Dis
December 2024
Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA.
FEMS Microbiol Lett
December 2024
Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, AL 36832, USA.
Hemolytic proteins are a major group of virulence factors in pathogenic Aeromonas hydrophila. Six genes encoding presumable hemolytic proteins were revealed from the genome of virulent A. hydrophila (vAh) that caused severe disease in channel catfish.
View Article and Find Full Text PDFJ Fish Dis
December 2024
Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!