To achieve the goal of "carbon peak and neutrality," the strict requirements for greenhouse gas (GHG) emissions control in the agricultural sector were recommended in relevant plans for Beijing during the 14th Five-Year Plan period. Through collecting agricultural activity data and calculating and screening the emission factors, the amount and emission characteristics of agricultural GHG emissions in Beijing in 2020 were estimated and set as the baseline condition. On this basis, the GHG emissions in 2025 with optimized measurements implemented, which were selected in combination with the natural conditions and planting-breeding mode of Beijing, were set as the reduction condition. The emission reduction potential and its distribution during the 14th Five-Year Plan Period were predicted simultaneously. Meanwhile, the reduction effects on the GHG emissions of optimized measurements were evaluated. In addition, relevant policy recommendations on GHG reduction were proposed accordingly. The results revealed that the total agricultural GHG emissions in Beijing were estimated to be 456000 t (CO-eq) in 2020, primarily from sources of animal intestinal fermentation and manure management, with contribution rates of 50.7% and 26.7%, respectively. Spatially, it was mainly distributed in districts with large livestock and poultry breeding scales, such as Shunyi District, Miyun District, and Yanqing District, etc. It was predicted that in 2025, the total agricultural GHG emissions would be 349000 t (CO-eq), and the emission reduction potential in the 14th Five-Year Plan period would be 107000 t (CO-eq). Animal intestinal fermentation would be the emission source with the largest reduction potential (60000 tons, CO-eq), followed by the emission source of animal manure management (37000 tons, CO-eq). Adjusting fodder composition and optimizing manure management were analyzed to be the most effective optimized measurements for agricultural GHG emission reduction. Moreover, the emission reduction potential of CH would be greater than that of NO. The emission reduction potential would be mainly distributed in Miyun District, Shunyi District, Yanqing District, Fangshan District, Tongzhou District, and other suburbs with large livestock and poultry breeding scales, accounting for more than 10% of the total emission reduction potential for each. These regions with large emission reduction potential should be prioritized and then the assessments should be extended to the whole city. The measurements were recommended as follows:① the research and promotion of technologies such as fodder optimization and the efficient treatment of manure should be strengthened, ② the scope of the combination of planting and breeding model should be expanded to promote the development of circular agriculture, and ③ relevant standards, guidelines, and specifications for green and low-carbon agriculture should be formulated, and the regulatory and policy system for synergy reduction of agricultural pollution and GHG should be developed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202210214 | DOI Listing |
Sci Rep
December 2024
College of Economics and Management, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
In light of the Chinese government's dual carbon goals, achieving cleaner production activities has become a central focus, with regional environmental collaborative governance, including the management of agricultural carbon reduction, emerging as a mainstream approach. This study examines 268 prefecture-level cities in China, measuring the carbon emission efficiency of city agriculture from 2001 to 2022. By integrating social network analysis and a modified gravity model, the study reveals the characteristics of the spatial association network of city agricultural carbon emission efficiency in China.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong Agricultural University, Taian, 271018, China.
Acoustic emission information can describe the damage degree of rock samples in the process of failure. However, as a discrete non-stationary signal, acoustic emission information is difficult to be effectively processed by conventional methods, while wavelet analysis is an effective method for non-stationary signal processing. Therefore, acoustic emission signal is deeply studied by using wavelet analysis method.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFSci Rep
December 2024
Kombolcha Institute of Technology, Wollo University, Dessie, Ethiopia.
Alcohol-based fuels have shown high compatibility with spark-ignition (SI) engines, which require improvements in fuel efficiency and emissions reduction to meet modern environmental standards. While extensive research has been conducted on ethanol and other lower-order alcohols, there has been comparatively limited investigation into higher-order alcohols like butanol and pentanol as fuel alternatives. Previous studies on pentanol-gasoline blends in SI engines have demonstrated improved engine performance and reduced emissions.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Education, Shinawatra University, Bangkok, Thailand.
This study aims to reduce engine emissions while maintaining engine performance and providing a sustainable fuel source for long-term use. It introduces a novel approach by combining pine oil (PO) and lemon grass oil (LGO) with diesel fuel in a specific ratio (10% PO + 10% LGO + 80% Diesel). This work is innovative in that it employs these two distinct low-viscosity biofuel blends in conjunction with diesel fuel in an agricultural engine, resulting in reduced carbon footprints in the tailpipe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!