Based on the offline sampling data of volatile organic compounds (VOCs) and the simultaneous online measurements of conventional gaseous air pollutants and meteorological parameters in urban Huanggang, the volume fractions and component characteristics of VOCs were analyzed. The sources and ozone (O) formation sensitivity of VOCs during severe ozone pollution episodes were analyzed using the positive matrix factorization (PMF) model and the photochemical box model coupled with master chemical mechanism (PBM-MCM), respectively. The results revealed that the average volume fractions of total volatile organic compounds were (21.57±3.13)×10, with higher volume fractions in winter and spring compared to those in summer and autumn. Among these, alkanes (49.9%) and alkenes (16.4%) accounted for the highest proportion. The PMF analysis results showed that fuel combustion (27.8%), vehicle emission (19.9%), solvent use (15.7%), industrial halogenated hydrocarbon emission (12.1%), chemical enterprise emission (10.5%), natural sources (7.8%), and diesel vehicle emission (6.2%) were the main sources of VOC emissions. Anthropogenic VOCs emitted by solvent use, fuel combustion, and chemical enterprises contributed significantly (60.9% in total) to generating O, which indicates that these three types of anthropogenic sources should be controlled first when it comes to preventing and controlling ozone pollution. Further, the relative incremental reactivity (RIR) and empirical kinetic method approach (EKMA) revealed that O formation was in a VOCs-limited regime during the observation period in Huanggang, China. Furthermore, O formation was more sensitive to -xylene, -xylene, ethylene, 1-butene, and toluene; therefore, reducing these VOCs should be prioritized.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202211001DOI Listing

Publication Analysis

Top Keywords

volatile organic
12
organic compounds
12
volume fractions
12
ozone formation
8
ozone pollution
8
fuel combustion
8
vehicle emission
8
vocs
5
[characteristics sources
4
sources contributions
4

Similar Publications

Background: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.

View Article and Find Full Text PDF

Recent Advances of the Effect of HO on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies.

Environ Sci Technol

January 2025

Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China.

Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of HO and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of HO on VOC oxidation.

View Article and Find Full Text PDF

The role and progress of zeolites in photocatalytic materials.

Environ Res

January 2025

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:

This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.

View Article and Find Full Text PDF

Olfaction with legs-Spiders use wall-pore sensilla for pheromone detection.

Proc Natl Acad Sci U S A

January 2025

General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany.

The sense of smell is a central sensory modality of most terrestrial species. However, our knowledge of olfaction is based on vertebrates and insects. In contrast, little is known about the chemosensory world of spiders and nothing about how they perform olfaction despite their important ecological role.

View Article and Find Full Text PDF

The detection of skeletal remains using human remain detection dogs (HRD) is often reported anecdotally by handlers to be a challenge. Limited studies have been conducted to determine the volatile organic compounds (VOCs) emitted from bones, particularly when there is limited organic matter remaining. This study aimed to determine the VOCs emitted from dry, weathered bones and examine the detection performance of HRD dogs on these bones when used as training aids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!