Background: Lipid droplets (LDs) are an important organelle as the main energy storage site in cells. LDs viscosity controls the material and energy exchange between it and other organelles. Furthermore, the LDs metabolic abnormalities, cell dysfunction, some diseases may be attributed to the singular LDs viscosity. Currently, the fluorescent probes for sensing the variations of LDs viscosity are still scarce and expose some drawbacks of low fluorescence quantum yield, low sensitivity and LDs polarity interference. Thus, the development of high performance probes is significant to detect LDs viscosity.
Results: We hereby provide a lipophilic fluorescent probe (TPE-BET) with high fluorescence quantum yield (Φ, 0.91 in glycerol) for imaging LDs viscosity in living cells. With the increase of viscosity from 0.54 cp to 934 cp, the fluorescence at λ/λ = 405/520 nm and the fluorescence quantum yield of TPE-BET linearly increased by 64.9 and 128.5 folds, respectively. Meanwhile, the outstanding LDs staining capability of TPE-BET may provide a high spatial resolution for LDs imaging. The cell imaging of TPE-BET not only successfully observed the viscosity variations of LDs in cell stress models, e.g., ferroptosis, inflammation and mitophagy, but also revealed the increased viscosity and extracellular delivery of LDs in heavy metal cell injury models (Hg/As) for the first time, which may supply concrete evidence for understanding the structure and function of LDs.
Significance: This represents a new fluorescent probe TPE-BET with high fluorescence quantum yield for imaging LDs viscosity, which may decrease the dose of probe and excitation light intensity along with the improvement on signal noise ratio (S/N). The imaging results of TPE-BET clarified that LDs viscosity may be an appraisal index on cell differentiation, state evaluation and drug screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341776 | DOI Listing |
J Mater Chem B
December 2024
Main group Organometallics Optoelectronic Materials and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
Lipid droplets (LDs) are dynamic, multifunctional organelles critical for regulating energy balance, cell signaling, membrane formation, and trafficking. Recent studies have highlighted LDs as emerging cancer biomarkers, with cancer cells typically exhibiting a higher number and viscosity of LDs compared to normal cells. This discovery paves the way for developing molecular probes that can monitor intracellular viscosity changes within LDs, offering a powerful tool for early cancer diagnosis, recurrence monitoring, and therapeutic interventions.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
Lipid droplets (LD) are crucial in pathological processes or conditions associated with abnormal lipid metabolism, such as obesity, diabetes, atherosclerosis, fatty liver diseases, and cancers. Cancer cells frequently contain elevated levels of nonpolar lipid droplets (LDs), serving as energy reserves. The proliferation of LDs, accompanied by an increase in viscosity, is a characteristic feature of cancer cells that prompted us to devise a fluorescent sensor for LD detection at physiological pH.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2025
Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:
Fluorescence probes with outstanding merits have wide applications in tumor diagnosis. However, most of these probes can only detect single tumor biomarker, potentially generating "false positive" signals within intricate biological systems. In contrast, the dual-locked fluorescent probes triggered by two response factors can effectively address the aforementioned limitations.
View Article and Find Full Text PDFAnal Methods
November 2024
Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Paper Science and Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China.
Lipid droplets (LDs) and lysosomes were dynamic organelles present in most eukaryotic cells that were interconnected and worked closely together to ensure the smooth physiological activities of organisms. The interaction between lipid droplets and lysosomes was thought to play a role in the development of certain diseases. In this paper we designed and synthesised a lipid droplet lysosomal probe.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 211198, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!