A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small rodent population cycles and plants - after 70 years, where do we go? | LitMetric

Small rodent population cycles and plants - after 70 years, where do we go?

Biol Rev Camb Philos Soc

Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Høyvangvegen 40, Ridabu, 2322, Norway.

Published: February 2024

Small rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long-lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant-herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant-rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore-relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent-plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant-herbivore interactions have - or do not have - plausible effects on rodent population dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.13021DOI Listing

Publication Analysis

Top Keywords

rodent population
20
population cycles
12
small rodent
8
plant-herbivore interactions
8
evidence base
8
rodent
7
cycles
6
population
5
cycles plants
4
plants 70 years
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!