We have developed a biomimetic delivery system termed the Monocyte Cell Membrane-Coated 1,8-Cineole Biomimetic Delivery System (MM-CIN-BDS or BDS), which integrates diethylaminoethyl-dextran (DEAE) and monocyte cell membrane (MM). This innovative approach enhances the cellular uptake efficiency of 1,8-cineole (CIN) and facilitates targeted therapy for atherosclerosis. Our findings demonstrate the successful modification of the drug carrier with DEAE and MM, as validated by measurements of particle size, zeta potential, microscopic morphology, and western blotting analyses. Notably, cellular uptake experiments unveil a significant enhancement in cellular uptake efficiency due to DEAE modification. However, the introduction of monocyte cell membranes diminishes this effect in normal human umbilical vein endothelial cells (HUVECs), although this efficiency is notably restored in HUVECs activated with lipopolysaccharide (LPS). Through in vivo imaging investigations, we observe that the MM coating augments distribution in the spleen, brain, and atherosclerotic plaques, while concurrently diminishing distribution in the heart and kidneys. Animal studies corroborate these findings, illustrating that MM-CIN-BDS treatment curtails lipid parameters, dampens the expression of inflammatory factors and proteins, mitigates vascular tissue damage, and ultimately reduces the extent of atherosclerotic lesion areas. To encapsulate, DEAE emerges as an especially adept agent for modifying drug carriers with suboptimal cellular uptake efficiency in the realm of cardiovascular diseases. The potential therapeutic promise of MM-CIN-BDS for atherosclerosis treatment is evident from our research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!