The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127362 | DOI Listing |
Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:
Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.
View Article and Find Full Text PDFTissue Cell
January 2025
Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia. Electronic address:
The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China.
Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!