Satellite monitoring reveals short-term cumulative and time-lag effect of drought and heat on autumn photosynthetic phenology in subtropical vegetation.

Environ Res

School of Geographical Sciences, Hunan Normal University, Changsha, 410081, China; Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada. Electronic address:

Published: December 2023

Comparing with the effect of the average climate change on vegetation phenology, the impacts of extreme climate events remain unclear, especially considering their characteristic cumulative and time-lag effects. Using solar-induced chlorophyll fluorescence (SIF) satellite records, we investigated the cumulative and time-lag effects of drought and heat events on photosynthesis, particularly for the end date of autumn photosynthesis (EOP), in subtropical vegetation in China. Our results showed a negative effect of drought on the delay of EOP, with the cumulative effect on 30.12% (maximum continuous dry days, CDD), 34.82% (dry days, DRD), and 26.14% (dry period, DSDI) of the study area and the general time-lag effect on 50.73% (maximum continuous dry days), 56.61% (dry days), and 47.55% (dry period) of the study area. The cumulative and lagged time were 1-3 months and 2-3 months, respectively. In contrast, the cumulative effect of heat on EOP was observed in 16.27% (warm nights, TN90P), 23.66% (moderate heat days, TX50P), and 19.19% (heavy heat days, TX90P) of the study area, with cumulative time of 1-3 months. The lagged time was 3-4 months, detected in 31.02% (warm nights), 45.86% (moderate heat days), and 36.52% (heavy heat days) of the study area. At the vegetation community level, drought and heat had relatively rapid impacts on EOP in the deciduous broadleaved forest, whereas evergreen forests and bushes responded to heat slowly and took a longer time. Our results revealed that drought and heat have short-term cumulative and time-lag effects on the EOP of subtropical vegetation in China, with varying effects among different vegetation types. These findings provide new insights into the effect of drought and heat on subtropical vegetation and confirm the need to consider these effects in the development of prediction models of autumn phenology for subtropical vegetation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117364DOI Listing

Publication Analysis

Top Keywords

drought heat
20
subtropical vegetation
20
cumulative time-lag
16
dry days
16
study area
16
heat days
16
time-lag effects
12
heat
11
cumulative
8
short-term cumulative
8

Similar Publications

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered (Franch.) Pax Endemic to China.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

(Franch.) Pax is an endangered species endemic to China, mainly scattered in the Qinling-Daba Mountains. The genetic diversity of 17 natural populations were analyzed by nuclear DNA (nDNA) and chloroplast DNA (cpDNA) to explore the driving forces for its microevolution.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Gene Family in Maize ().

Genes (Basel)

January 2025

Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.

Abiotic stresses impose significant constraints on crop growth, development, and yield. However, the comprehensive characterization of the maize () () gene family under stress conditions remains limited. LOXs play vital roles in plant stress responses by mediating lipid oxidation and signaling pathways.

View Article and Find Full Text PDF

The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals.

Antioxidants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.

View Article and Find Full Text PDF

Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!