Effect and influence mechanism of biofilm formation on the biological stability of reclaimed water.

Sci Total Environ

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address:

Published: January 2024

Microorganisms and sediments in reclaimed water adhere to the inner walls of pipes or water tanks, forming biofilms that support the continuous growth of microorganisms. These biofilms provide a protective barrier, shielding bacteria from disinfectants. This study investigated the impact of biofilms on bacterial growth and reproduction in reclaimed water and the factors limiting bacterial growth in reclaimed graywater (GMR) and reclaimed mixed wastewater (MWR). The results revealed that biofilm biomass gradually increased and reached a maximum value on Days 20-25, and the biomass of organisms continued to decrease after 40 days. Biofilms serve as a source of bacteria, continuously releasing them into reclaimed water systems. The presence of biofilms reduced the biological stability of the reclaimed water, leading to water quality deterioration. The concentration of assimilable organic carbon in the reclaimed water showed a positive correlation with the heterotrophic bacterial count and Escherichia coli levels in both the reclaimed water and biofilms. The threshold value of chlorine for inhibiting biofilms in reclaimed water was no <2 mg/L. High concentrations of free chlorine delayed the growth of biofilms but did not reduce the final biomass generated by the biofilms. Carbon was the limiting factor for the biological stability of reclaimed water, while nitrogen, phosphorus, and inorganic salts were not limiting factors. Thus, minimizing the concentration of organic matter in reclaimed water can reduce the nutrient sources available for biofilm formation. This study provides support for advancements in the wastewater reuse industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167735DOI Listing

Publication Analysis

Top Keywords

reclaimed water
32
reclaimed
10
water
10
biological stability
8
stability reclaimed
8
bacterial growth
8
biofilms
7
influence mechanism
4
mechanism biofilm
4
biofilm formation
4

Similar Publications

Optimization of an analytical method based on the use of zwitterionic- phosphorylcholine -HILIC column for the determination of multiple polar emerging contaminants in reclaimed water.

J Chromatogr A

December 2024

Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; LASIRE, University of Lille, Cité Scientifique, Villeneuve-d'Ascq, 59650, France.

The aim of this study was to optimize a Liquid Chromatography Mass Spectrometry (LC-MS) method using a zwitterionic phosphorylcholine HILIC column for the determination of several Persistent and Mobile Organic Contaminants (PMOC) in wastewater samples. An experimental design approach was implemented to both better understand the retention mechanisms of several polar compounds and to find the optimal operating conditions for their detection and quantification. Eleven PMOCs, with logD ranging from -5.

View Article and Find Full Text PDF

The escalating global water scarcity demands innovative solutions, one of which is hydroponic vegetable cultivation systems that increasingly use reclaimed wastewater. Nevertheless, even treated wastewater may still harbor various emerging organic contaminants, including pharmaceuticals. This study aimed to comprehensively assess the impact of pharmaceuticals, focusing on bioconcentration factors (BCFs), translocation factors (TFs), pharmaceutical persistence in aqueous environment, ecotoxicological end points, and associated environmental and health risks.

View Article and Find Full Text PDF

Electroplating is a widely used technology for anticorrosion materials and decorative coatings. In view of the transition to a circular economy, the current electroplating wastewater treatment disposing of heavy metal sludge and wastewater severely lacks sustainability. Authors recently reported the successful recycling of electroplating agents using hybrid semibatch/batch reverse osmosis technology (hybrid RO).

View Article and Find Full Text PDF

Coupling CO capture process with electrochemically enhanced membrane distillation system for lithium-ion battery recovery: Reagent-Saving and environmental footprint reducing.

Water Res

December 2024

College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China. Electronic address:

The evolution of energy structure and the push for carbon neutrality have triggered an urgent call for lithium-ion batteries (LIBs). However, reclaiming end-of-life LIBs with high purity, high efficiency, and low environmental impact, particularly by eliminating chemical reagent usage and promoting a closed-loop carbon footprint, is challenging. Herein, we proposed a strategy that couples the carbon capture (CC) process with an electrochemically enhanced membrane distillation system (ECMD).

View Article and Find Full Text PDF

To enhance the carbonation resistance of reclaimed concrete, several key factors affecting its performance were investigated. An orthogonal array (4³ × 2⁶) was employed to design the carbonation tests for steel fiber (SF) reinforced concrete. The study included varying SF volume ratios, along with considerations of different concrete ages (T) and water-cement ratios (W/R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!