Using multilinear regressions developed from excitation-emission matrices to estimate the wastewater content in urban streams impacted by sanitary sewer leaks and overflows.

Sci Total Environ

University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA. Electronic address:

Published: January 2024

Failing sewer infrastructure introduces unknown quantities of raw wastewater into urban streams, raising human and ecological health concerns. To address this problem, we developed multilinear regressions that relate fluorescent dissolved organic matter to wastewater content. The models were constructed with the area-normalized regional volumes of excitation-emission matrices measured for mixtures of deionized water, surface water from a wastewater-impacted stream, wastewater from a sanitary sewer adjacent to the stream, and Suwannee River natural organic matter. The best performing multilinear regression had a standard error of 0.55 % wastewater. A matrix-matched calibration was used to internally validate the approach and confirm the wastewater content of select samples. The multilinear model was externally validated through (i) comparison to concentrations of contaminants of emerging concern in surface water and wastewater and (ii) extension to samples from previous campaigns that employed alternative wastewater indicators. Using the validated model, we estimated an average wastewater content of 2.4 ± 4.0 % in 165 samples collected from 14 locations in the Gwynns Falls watershed (USA) between April 2019 and April 2023. The maximum wastewater content was 35 % at a site where sanitary sewer leaks and overflows have been previously documented. The reported approach represents a cost-effective and scalable technique to estimate wastewater content in urban streams through analysis of fluorescent dissolved organic matter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167736DOI Listing

Publication Analysis

Top Keywords

wastewater content
24
urban streams
12
sanitary sewer
12
organic matter
12
wastewater
11
multilinear regressions
8
excitation-emission matrices
8
estimate wastewater
8
content urban
8
sewer leaks
8

Similar Publications

Structure of Plant Populations in Constructed Wetlands and Their Ability for Water Purification.

Plants (Basel)

January 2025

Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.

View Article and Find Full Text PDF

Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes.

Polymers (Basel)

January 2025

Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.

View Article and Find Full Text PDF

Tailoring amino-functionalized n-alkyl methacrylate ester-based bio-hybrids for adsorption of methyl orange dye: Controllable macromolecular architecture via polysaccharide-integrated ternary copolymerization.

Int J Biol Macromol

January 2025

Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey. Electronic address:

Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created.

View Article and Find Full Text PDF

Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.

Membranes (Basel)

January 2025

Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur Col. Centro, Cd. Obregón C.P. 85000, Sonora, Mexico.

Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives.

View Article and Find Full Text PDF

Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals.

J Environ Manage

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India. Electronic address:

Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!