Background: Repetitive transcranial magnetic stimulation (rTMS) at left dorsolateral prefrontal cortex (lDLPFC) is commonly used in major depressive disorder (MDD), even though its therapeutic efficacy is limited. Given that many MDD patients show psychomotor retardation, we aim to examine whether the left motor cortex (lMC) as a novel rTMS target would provide effective and well-tolerated treatment as being comparable to lDLPFC-rTMS.
Methods: In this prospective double-blind randomized single-center study, 131 MDD patients were randomly assigned to the lDLPFC or lMC group and were treated with 10 Hz rTMS (90 % motor threshold) applied twice daily for 4000 pulses continuously over five days. The primary endpoint was the Hamilton Depression Scale (HAMD) total score change after treatment.
Results: After the five-day rTMS treatment, there was no significant difference in both HAMD reduction rate (lDLPFC 59.3 % ± 20.4 %, lMC 51.3 % ± 26.3 %, P = 0.10) and adverse effects (P = 0.79) between 48 (73.8 %) lMC subjects and 51 (77.3 %) lDLPFC subjects. Furthermore, the lMC study group showed stable HAMD scores at follow-up compared to their endpoint scores (P = 0.08).
Limitations: Sham-control group was not included and the sample size was small. Therefore, our results should be seen as exploratory and preliminary.
Conclusions: The preliminary good therapeutic response, comparability, and tolerability of lMC-rTMS suggest lMC a potential and more easily accessible rTMS target. Together, our findings raise the possibility of symptom-specific rTMS in motor cortex (psychomotor retardation) or lDLPFC (cognitive deficits). This warrants larger clinical trials of rTMS in MDD with symptom-specific stimulation targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2023.10.058 | DOI Listing |
Cortex
December 2024
Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario, Canada.
It has been demonstrated that humans exhibit an attention bias towards the lower visual field (e.g., faster target detection for targets appearing below eye level).
View Article and Find Full Text PDFAging (Albany NY)
January 2025
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Life Sciences, University of Siena, Siena, Italy.
We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, China
Introduction: Spasticity is a common complication of stroke, which is related to poor motor recovery and limitations in the performance of activities. Both transcranial magnetic stimulation (TMS) and extracorporeal shockwave therapy (ESWT) are effective treatment methods for poststroke spasticity (PSS). However, there is no existing study exploring the safety and effectiveness of TMS combined with ESWT for PSS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!