A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Black soldier fly pulp in the diet of golden pompano: Effect on growth performance, liver antioxidant and intestinal health. | LitMetric

Black soldier fly pulp in the diet of golden pompano: Effect on growth performance, liver antioxidant and intestinal health.

Fish Shellfish Immunol

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, 572019, China. Electronic address:

Published: November 2023

Black soldier fly (Hermetia illucens) has been widely researched as a protein source for fish meal replacement in aquaculture, but few studies have focused on its potential as a feed additive for growth and immune enhancement. We conducted a 56-day culture experiment to determine the impact of feed addition of black soldier fly pulp (BSFP, with 86.2% small peptides in dry basis) on growth performance, plasma biochemistry, liver antioxidant levels, intestinal immunity, digestion and microbiota of juvenile golden pompano (Trachinotus ovatus, 5.63 ± 0.02 g). BSFP was added to the basal diet at 0%, 1%, 3%, 5%, 7% and 9% (named Control, BSFP-1, BSFP-3, BSFP-5, BSFP-7, BSFP-9), respectively. BSFP increased the weight gain rate, specific growth rate, protein efficiency ratio and reduced the feed conversion rate of juvenile T. ovatus, the optimal growth performance was reached at BSFP-1, after which a negative feedback phenomenon was observed. Low levels of BSFP upregulated the expression of hepatic antioxidant, intestinal tight junctions, anti-inflammatory related genes and enhanced antioxidant, immune and intestinal digestive enzyme activities, which simultaneously reduced hepatic malondialdehyde and plasma aspartate transaminase and alanine aminotransferase concentrations. However, at BSFP-7, catalase activity was significantly reduced, while NF-κB p65 and pro-inflammatory cytokines transcription was significantly enhanced (P < 0.05). The results suggest that high doses of BSFP addition may damage fish health by inhibiting small peptide uptake, decreasing the activity of antioxidant enzyme and activating the canonical NF-κB pathway. Conversely, low doses of BSFP enhanced intestinal tight junction protein transcription, digestive enzyme activity and immune performance, inhibited pathogenic microbiota, while enhancing liver antioxidant capacity, which was associated with activated Nrf2-Keap1 pathway and suppressed NF-κB pathway, showing its potential as a feed additive to aquafeeds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.109156DOI Listing

Publication Analysis

Top Keywords

black soldier
12
soldier fly
12
growth performance
12
fly pulp
8
golden pompano
8
liver antioxidant
8
antioxidant intestinal
8
growth
5
pulp diet
4
diet golden
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!