Transition metal phosphides (TMPs) have been considered as potential electrocatalysts with adjustable valence states, metal characteristics, and phase diversity. However, it is necessary but remains a major challenge to obtain efficient and durable TMPs catalysts, which can realize efficiently for not only all-pH hydrogen evolution reaction (HER), but also oxygen evolution reaction (OER). Hence, cerium dioxide incorporated nickel cobalt phosphide growth on nickel foam (CeO/NiCoP) is fabricated by hydrothermal and phosphating reaction. CeO/NiCoP shows excellent activity for all-pH HER (overpotentials of 48, 58 and 72 mV in alkaline, neutral and acidic solution at the current density of 10 mA cm), and has a small OER overpotential (231 mV @ 10 mA cm). Moreover, the voltage of overall water splitting in alkaline solution and simulated seawater electrolyte is only 1.46 and 1.41 V (10 mA cm), respectively, coupled with outstanding operational stability and corrosion resistance. Further mechanism research shows that CeO/NiCoP possesses rich heterointerfaces, which serves more exposed active sites and possesses a promising superhydrophilic and superaerophobic surface. Density functional theory calculations manifest that CeO/NiCoP has appropriate energy for intermediates of reactions. This work provides a deep insight into the CeO/NiCoP catalyst for high-performance water/seawater electrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.09.144 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Qingdao Industrial Energy Storage Technology Institute, Department of Energy Science and Energy Technology, Songling Road, 189, 266101, Qingdao City, CHINA.
Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.
The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.
View Article and Find Full Text PDFCell
December 2024
Key Laboratory Experimental Teratology of the Ministry of Education, New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Advanced Medical Research Institute, Shandong University, Jinan, China; Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China. Electronic address:
Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.
Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!