The present study investigated the effect of fish gelatin/chitosan-based (FG/CS-based) films incorporated with lemon essential oil (LEO) on grass carp fillets in terms of moisture status, total volatile basic nitrogen (TVB-N), and microbial community succession during chilled (4 °C) and iced (0 °C) storage. Low-field nuclear magnetic resonance (LF-NMR) revealed that the active films remarkably inhibited moisture transformation from being the immobilized to free water in grass carp fillets, accompanied with the reduced T relaxation time. Besides, magnetic resonance imaging (MRI) detected a higher density of proton in the treated fish samples, indicating that the active films could improve the water-holding capacity of fish samples. Moreover, high-throughput 16S rRNA sequencing suggested that the FG/CS-based films loaded with LEO efficiently decreased the relative abundance of the bacterial genera Shewanella and Aeromonas in grass carp fillets, with minimal accumulation of TVB-N during storage. Additionally, the low storage temperature (0 °C) could further enhance the preservative effect of the active films on the fish samples, which together prolonged their shelf-life to 18 days. Overall, the combination of the active films and iced storage could provide a promising strategy to preserve grass carp fillets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2023.110437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!