Stem cells are essential for the development and organ regeneration of multicellular organisms, so their infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi). In plants, a small group of stem cells harbored within the shoot apical meristem generate all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate in these cells, yet the molecular bases of this exclusion remain only partially understood. Here, we show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological and economic relevance and lays the foundations for our future understanding of the unique systems underlying stem cell immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589665 | PMC |
http://dx.doi.org/10.1073/pnas.2302069120 | DOI Listing |
Sci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:
For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Chair of Hematology, University of Milan; Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano.
Background: Anti-CD19 CAR T-cells have revolutionized outcomes in relapsed/refractory large B-cell lymphomas. Long-term follow-up underscored the role of hematological toxicity in non-relapse mortality, largely driven by infections, leading to the development of the CAR-HEMATOTOX (HT) score for predicting neutropenia. The European scientific community (EHA/EBMT) later reached a consensus, defining a new entity: immune effector cell-associated hematotoxicity (ICAHT).
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.
Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!