Cold-induced nonshivering thermogenesis has contributed to the improvement of several metabolic syndromes caused by obesity. Several long noncoding RNAs (lncRNAs) have been shown to play a role in brown fat biogenesis and thermogenesis. Here we show that the lncRNA lnc266 is induced by cold exposure in inguinal white adipose tissue (iWAT). In vitro functional studies reveal that lnc266 promotes brown adipocyte differentiation and thermogenic gene expression. At room temperature, lnc266 has no effects on white fat browning and systemic energy consumption. However, in a cold environment, lnc266 promotes white fat browning and thermogenic gene expression in obese mice. Moreover, lnc266 increases core body temperature and reduces body weight gain. Mechanistically, lnc266 does not directly regulate Ucp1 expression. Instead, lnc266 sponges miR-16-1-3p and thus abolishes the repression of miR-16-1-3p on Ucp1 expression. As a result, lnc266 promotes preadipocyte differentiation toward brown-like adipocytes and stimulates thermogenic gene expression. Overall, lnc266 is a cold-inducible lncRNA in iWAT, with a key role in white fat browning and the thermogenic program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10702832 | PMC |
http://dx.doi.org/10.15252/embr.202255467 | DOI Listing |
Nat Commun
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea. Electronic address:
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells.
View Article and Find Full Text PDFFoods
December 2024
Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy.
Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain.
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.
View Article and Find Full Text PDFCommun Biol
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!