Retinoblastoma (RB), a childhood retinal cancer is caused due to RB1 gene mutation which affects the child below 5 years of age. Angiogenesis has been proven its role in RB metastasis due to the presence of vascular endothelial growth factor (VEGF) in RB cells. Therefore, exploring angiogenic pathway by inhibiting VEGF in treating RB would pave the way for future treatment. In preclinical studies, anti-VEGF molecule have shown their efficacy in treating RB. However, treatment requires recurrent intra-vitreal injections causing various side effects along with patient nonadherence. As a result, delivery of anti-VEGF agent to retina requires an ocular delivery system that can transport it in a non-invasive manner to achieve patient compliance. Moreover, development of these type of systems are challenging due to the complicated physiological barriers of eye. Adopting a non-invasive or minimally invasive approach for delivery of anti-VEGF agents would not only address the bioavailability issues but also improve patient adherence to therapy overcoming the side effects associated with invasive approach. The present review focuses on the eye cancer, angiogenesis and various novel ocular drug delivery systems that can facilitate inhibition of VEGF in the posterior eye segment by overcoming the eye barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2023045298DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
posterior eye
8
eye segment
8
side effects
8
delivery anti-vegf
8
invasive approach
8
delivery
5
eye
5
advanced technologies
4
technologies drug
4

Similar Publications

Opportunities and challenges of bacterial extracellular vesicles in regenerative medicine.

J Nanobiotechnology

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.

Extracellular vesicles (EVs) are membrane-bound vesicles that are shed or secreted from the cell membrane and enveloped by a lipid bilayer. They possess stability, low immunogenicity, and non-cytotoxicity, exhibiting extensive prospects in regenerative medicine (RM). However, natural EVs pose challenges, such as insufficient targeting capabilities, potential biosafety concerns, and limited acquisition pathways.

View Article and Find Full Text PDF

Erastin, as an effective ferroptosis inducer, has received extensive attention in anti-tumor research. To develop an oral nanocarrier for high efficient loading hydrophobic erastin, here we prepared a fluoro-liposome (FA-3 F-LS) by the self-assembly of the folic acid modified fluorinated amphiphiles-FA-3 F conjugates. The hydrophobic component of three perfluorooctyl chains endows the FA-3 F-LSs with high stability to resist the harsh gastrointestinal tract condition.

View Article and Find Full Text PDF

Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!