Informative and consistent taxonomy above the species level is essential to communication about evolution, biodiversity and conservation, and yet the practice of taxonomy is considered opaque and subjective by non-taxonomist scientists and the public alike. While various proposals have tried to make the basis for the ranking and inclusiveness of taxa more transparent and objective, widespread adoption of these ideas has lagged. Here, we present TaxonomR, an interactive online decision-support tool to evaluate alternative taxonomic classifications. This tool implements an approach that quantifies the criteria commonly used in taxonomic treatments and allows the user to interactively manipulate weightings for different criteria to compare scores for taxonomic groupings under those weights. We use the butterfly taxon Argynnis to demonstrate how different weightings applied to common taxonomic criteria result in fundamentally different genus-level classifications that are predominantly used in different continents and geographic regions. These differences are objectively compared and quantified using TaxonomR to evaluate the kinds of criteria that have been emphasized in earlier classifications, and the nature of the support for current alternative taxonomic arrangements. The main role of TaxonomR is to make taxonomic decisions transparent via an explicit prioritization scheme. TaxonomR is not a prescriptive application. Rather, it aims to be a tool for facilitating our understanding of alternative taxonomic classifications that can, in turn, potentially support global harmony in biodiversity assessments through evidence-based discussion and community-wide resolution of historically entrenched taxonomic tensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cla.12563 | DOI Listing |
Sensors (Basel)
December 2024
Department of Biomedical Engineering, Lebanese International University, Beirut P.O. Box 146404, Lebanon.
The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.
View Article and Find Full Text PDFNutrients
December 2024
Nutrition, Diabetes and Metabolism Research Unit, Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
Background/objectives: Despite the accumulating evidence on the detrimental impact of UPFs on health, a common limit of the available studies concerns the instruments used to collect information about the consumption of processed foods. Recently, a specific NOVA-FFQ was proposed for the evaluation of ultra-processed food (UPF) consumption, but it does not allow the simultaneous assessment of energy and nutrient intake. We evaluate the concordance between the NOVA-FFQ and a common questionnaire (EPIC-FFQ) when assessing (1) the intake of foods with different degrees of processing and (2) the relationship between diet composition and cardiometabolic profile.
View Article and Find Full Text PDFFoods
January 2025
Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
, an edible seaweed, plays a crucial role in our daily lives by providing essential nutrients, including minerals, to the human body. The detection of mineral content during different growth stages of benefits the goals of ensuring product quality, meeting diverse consumer needs, and achieving quality classification. Currently, the determination of minerals in primarily relies on inductively coupled plasma mass spectrometry and other methods, which are time-consuming and labor-intensive.
View Article and Find Full Text PDFBMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.
Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.
Sci Data
January 2025
University of Cordoba, Department of Computing and Numerical Analysis, Córdoba, 14071, Spain.
Acquiring gait metrics and anthropometric data is crucial for evaluating an individual's physical status. Automating this assessment process alleviates the burden on healthcare professionals and accelerates patient monitoring. Current automation techniques depend on specific, expensive systems such as OptoGait or MuscleLAB, which necessitate training and physical space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!