A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Value of Applying Machine Learning in Predicting the Time of Symptom Onset in Stroke Patients: Systematic Review and Meta-Analysis. | LitMetric

Background: Machine learning is a potentially effective method for identifying and predicting the time of the onset of stroke. However, the value of applying machine learning in this field remains controversial and debatable.

Objective: We aimed to assess the value of applying machine learning in predicting the time of stroke onset.

Methods: PubMed, Web of Science, Embase, and Cochrane were comprehensively searched. The C index and sensitivity with 95% CI were used as effect sizes. The risk of bias was evaluated using PROBAST (Prediction Model Risk of Bias Assessment Tool), and meta-analysis was conducted using R (version 4.2.0; R Core Team).

Results: Thirteen eligible studies were included in the meta-analysis involving 55 machine learning models with 41 models in the training set and 14 in the validation set. The overall C index was 0.800 (95% CI 0.773-0.826) in the training set and 0.781 (95% CI 0.709-0.852) in the validation set. The sensitivity and specificity were 0.76 (95% CI 0.73-0.80) and 0.79 (95% CI 0.74-0.82) in the training set and 0.81 (95% CI 0.68-0.90) and 0.83 (95% CI 0.73-0.89) in the validation set, respectively. Subgroup analysis revealed that the accuracy of machine learning in predicting the time of stroke onset within 4.5 hours was optimal (training: 0.80, 95% CI 0.77-0.83; validation: 0.79, 95% CI 0.71-0.86).

Conclusions: Machine learning has ideal performance in identifying the time of stroke onset. More reasonable image segmentation and texture extraction methods in radiomics should be used to promote the value of applying machine learning in diverse ethnic backgrounds.

Trial Registration: PROSPERO CRD42022358898; https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=358898.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603565PMC
http://dx.doi.org/10.2196/44895DOI Listing

Publication Analysis

Top Keywords

machine learning
32
applying machine
16
predicting time
16
learning predicting
12
time stroke
12
training set
12
validation set
12
95%
9
learning
8
onset stroke
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!