Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology.

Eur J Cardiothorac Surg

Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.

Published: October 2023

Objectives: The goal of this study was to identify the practical applications of intravenous cell therapy for single-ventricle physiology (SVP) by establishing experimental SVP models.

Methods: An SVP with a three-stage palliation was constructed in an acute swine model without cardiopulmonary bypass. A modified Blalock-Taussig (MBT) shunt was created using an aortopulmonary shunt with the superior and inferior venae cavae (SVC and IVC, respectively) connected to the left atrium (n = 10). A bidirectional cavopulmonary shunt (BCPS) was constructed using a graft between the IVC and the left atrium with an SVC cavopulmonary connection (n = 10). The SVC and the IVC were connected to the pulmonary artery to establish a total cavopulmonary connection (TCPC, n = 10). The survival times of half of the animal models were studied. The other half and the biventricular sham control (n = 5) were injected intravenously with cardiosphere-derived cells (CDCs), and the cardiac retention of CDCs was assessed after 2 h.

Results: All SVP models died within 20 h. Perioperative mortality was higher in the BCPS group because of lower oxygen saturation (P < 0.001). Cardiac retention of intravenously delivered CDCs, as detected by magnetic resonance imaging and histologic analysis, was significantly higher in the modified Blalock-Taussig and BCPS groups than in the TCPC group (P < 0.01).

Conclusions: Without the total right heart exclusion, stage-specific SVP models can be functionally constructed in pigs with stable outcomes. Intravenous CDC injections may be applicable in patients with SVP before TCPC completion, given that the initial lung trafficking is efficiently bypassed and sufficient systemic blood flow is supplied from the single ventricle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576638PMC
http://dx.doi.org/10.1093/ejcts/ezad304DOI Listing

Publication Analysis

Top Keywords

animal models
8
svc ivc
8
ivc connected
8
left atrium
8
cavopulmonary connection
8
intravenous infusion
4
infusion cardiac
4
cardiac progenitor
4
progenitor cells
4
cells animal
4

Similar Publications

Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.

View Article and Find Full Text PDF

Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis.

Chin Med

December 2024

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.

Background: Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study.

View Article and Find Full Text PDF

Distinct phenotypes in the preeclamptic-like mouse model induced by adenovirus carrying sFlt1 and recombinant sFlt1 protein.

Eur J Med Res

December 2024

Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.

Background: Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Tumor organoids have emerged as powerful tools for in vitro cancer research due to their ability to retain the structural and genetic characteristics of tumors. Nevertheless, the absence of a complete tumor microenvironment (TME) limits the broader application of organoid models in immunological studies. Given the critical role of immune cells in tumor initiation and progression, the co-culture model of organoids and peripheral blood mononuclear cells (PBMCs) may provide an effective platform for simulating the interactions between immune and tumor cells in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!