RNA-Binding Protein-Mediated mRNA Deadenylation in Mammalian Cell Extracts.

Methods Mol Biol

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

Published: November 2023

Removal of the poly(A) tail, or deadenylation, is a crucial step in destabilizing mRNAs in eukaryotes. In this chapter, we describe a cell-free deadenylation assay that uses cytoplasmic cell extracts from human HEK293 cells transiently transfected with DNA encoding RNA-binding proteins (RBP), and in vitro-transcribed, radiolabeled, RNA probes. We include methods to evaluate the effects of RBPs or deadenylases on various in vitro-transcribed probes, with or without poly(A) tails. Finally, we also demonstrate the adaptability of these assays to test purified protein components in our cell-free deadenylation assay. In our experience, these methods are well suited for the initial assessment of the effects of RBPs on the deadenylation of mRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025660PMC
http://dx.doi.org/10.1007/978-1-0716-3481-3_11DOI Listing

Publication Analysis

Top Keywords

cell extracts
8
cell-free deadenylation
8
deadenylation assay
8
effects rbps
8
deadenylation
5
rna-binding protein-mediated
4
protein-mediated mrna
4
mrna deadenylation
4
deadenylation mammalian
4
mammalian cell
4

Similar Publications

Synthetic antidiabetic drugs are often associated with various adverse side effects, including hypoglycemia, nausea, gastrointestinal disturbances, headaches, and even liver damage. In contrast, plant-derived natural antidiabetic bioactive compounds typically exhibit lower toxicity and fewer side effects and have been reported to aid effectively in diabetes management. These plant extracts regulate diabetes by restoring pancreatic function, enhancing insulin secretion, inhibiting intestinal glucose absorption, and facilitating insulin dependent metabolism.

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Background: Colon cancer is the third most common cancer type worldwide. Novel alternative therapeutic anti-cancer drugs against colon cancer with less toxicity are to be explored . This study was aimed to explore the anti-proliferative and anti-migratory activity of various fractions of ethanolic leaf extract on human colon cancer cell lines (HCT-116) and to explore the potential molecular targets from the most potent plant extract fraction.

View Article and Find Full Text PDF

Introduction: Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.

Methods: The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus Xylaria ellisii isolated from leaf tissues of the Acorus calamus Linn plant.

View Article and Find Full Text PDF

Scope: This study aimed to assess the antioxidant, anti-inflammatory, and acetylcholinesterase activities of fruiting bodies (FB) and mycelium (M) extracts of Morchella esculenta L. collected from various regions of Pakistan. The samples included Skardu fruiting body (SKFB) and mycelia Skardu (SKM), Malam Jaba fruiting body (MJFB) and Malam Jaba mycelia (MJM), Krair Mansehra fruiting body (KMFB) and Krair Mansehra mycelia (KMM), and Thandiani fruiting body (TFB) and Thandiani mycelia (TM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!