As part of the activities of the International Commission on Radiological Protection (ICRP) Task Group 103, the present study developed a new set of respiratory tract organs consisting of the extrathoracic, bronchial, bronchiolar, and alveolar-interstitial regions for newborn, 1-, 5-, 10-, and 15-y-old males and females for use in pediatric mesh-type reference computational phantoms. The developed respiratory tract organs, while preserving the original topologies of those of the pediatric voxel-type reference computational phantoms of ICRP Publication 143, have improved anatomy and detailed structure and also include μm-thick target and source regions prescribed in ICRP Publication 66. The dosimetric impact of the developed respiratory tract organs was investigated by calculating the specific absorbed fraction for internal electron exposures, which were then compared with the ICRP Task Group 96 values. The results showed that except for the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger specific absorbed fractions than the Task Group 96 values. The maximum difference was a factor of ~3.5 for the extrathoracic-2 basal cell and surface as target and source regions, respectively. These results reflect the differences in the target masses and geometry caused by the anatomical enhancement of the pediatric mesh phantoms. For the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger values for low energy ranges and lower values with increasing energies, owing to the differences in the size and shape of the alveolar-interstitial region.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HP.0000000000001740DOI Listing

Publication Analysis

Top Keywords

respiratory tract
16
tract organs
16
reference computational
12
computational phantoms
12
task group
12
alveolar-interstitial region
12
pediatric mesh
12
mesh phantoms
12
pediatric mesh-type
8
mesh-type reference
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!