Energetic materials have been widely applied in civil and military fields, whose thermostability is a key indicator to evaluate their safety levels under severe conditions. Herein, two novel energetic metal-organic frameworks (EMOFs), namely, and , were experimentally obtained and comprehensively characterized. The two EMOFs both possess unique three-dimensional (3D) coordination structures. With a high crystal density of 2.184 g·cm, EMOF exhibits outstandingly superior thermostability (onset: 290 °C; peak: 303 °C), while EMOF features onset and peak decomposition temperatures of 220 and 230 °C. The calculated energetic parameters of and are as follows: detonation velocity: 8731 m·s and 8294 m·s; detonation pressure: 26.5 and 26.4 GPa. Compared to EMOF , EMOF features high energy, excellent thermostability, and low mechanical sensitivities, which should be partly attributed to more plentiful coordination interactions. More coordination bonds are conducive to strengthening the EMOF framework, which needs much more energy to collapse, thereby maintaining higher thermal stability. The above favorable characteristics not only indicate EMOF has a promising future in applications as a thermostable explosive but also provide an effective and feasible strategy for developing novel heat-resistant energetic materials via reinforced frame structures of EMOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c02233 | DOI Listing |
Dalton Trans
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
The rational design of advanced oxygen reduction reaction (ORR) catalysts is essential to improve the performance of energy conversion devices. However, it remains a huge challenge to construct hierarchical micro-/meso-/macroporous nanostructures, especially mesoporous transport channels in catalysts, to enhance catalytic capability. Herein, motivated by the characteristics of energetic metal-organic frameworks (EMOFs) that produce an abundance of gases during high-temperature pyrolysis, we prepared a unique tetrazine-based EMOF-derived electrocatalyst (denoted as FeC@NSC-900) consisting of highly dispersed FeC nanoparticles and N,S-codoped mesoporous carbon nanotubes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively utilized across various research areas. However, the application of 2D MOF-based membranes for the removal of heavy metal ions remains largely unexplored, despite their potential as suitable candidates due to their inherent porosity. In this study, we employed molecular dynamics (MD) simulations to investigate the capacity of a typical 2D MOF, Cu-THQ, for the separation of heavy metal ions, including Cd²⁺, Cu²⁺, Hg²⁺, and Pb²⁺.
View Article and Find Full Text PDFChem Asian J
December 2024
Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (SAC) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 (Universitetet i Oslo) framework, synthesized via a straightforward solution impregnation method (denoted as UiO-66/Ni now onwards).
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
The separation of xylene isomers, especially para-xylene, is a crucial but challenging process in the chemical industry due to their similar molecular dimensions. Here, a flexible metal-organic framework, Ni(ina), (ina = isonicotinic acid) is employed to effectively discriminate xylene isomers. The adsorbent with adaptive deformation accommodates the shapes of isomer molecules, thereby translating their subtle shape differences into characteristic framework deformation energies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!