Model organisms are crucial in research as they can provide key insights applicable to other species. This study proposes the use of the amphibian species , widely available through the aquarium trade, as a model organism for the study of chytridiomycosis, a disease caused by the fungus (Bd) and linked to amphibian decline and extinction globally. Currently, no model organisms are used in the study of chytridiomycosis, particularly because of the lack of availability and nonstandardized methods. Thus, laboratories around the world use wild local species to conduct Bd infection experiments, which prevents comparisons between studies and reduces reproducibility. Here, we performed a series of Bd infection assays that showed that has a dose- and genotype-dependent response, can generalize previous findings on virulence estimates in other species, and can generate reproducible results in replicated experimental conditions. We also provided valuable information regarding husbandry, including care, housing, reproduction, and heat treatment to eliminate previous Bd infections. Together, our results indicate that is a powerful and low-ecological-impact system for studying Bd pathogenicity and virulence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614710 | PMC |
http://dx.doi.org/10.1080/21505594.2023.2270252 | DOI Listing |
Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens. Here, we address questions of how LECs achieve durable antigen archiving and whether LECs with high levels of antigen express unique transcriptional programs. We used single cell sequencing in dissociated LN tissue and spatial transcriptomics to quantify antigen levels in LEC subsets and dendritic cell populations at multiple time points after immunization and determined that ceiling and floor LECs archive antigen for the longest duration.
View Article and Find Full Text PDFAdv Mater
December 2024
Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Hydrogels with mechanical performances similar to load-bearing tissues are in demand for in vivo applications. In this work, inspired by the self-assembly behavior of amphiphilic polymers, polyurethane-based tough hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure through in situ water-induced microphase separation strategy are developed, in which poly(ethylene glycol)-based polyurethane (PEG-PU, hydrophilic) and poly(ε-caprolactone)-based polyurethane (PCL-PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG-PU and PCL-PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1.
The release of heavy metals from industrial, agricultural, and mining activities poses significant risks to aquatic ecosystems by degrading water quality and generating reactive oxygen species (ROS) that can damage DNA in aquatic organisms. Daphnia is a widespread keystone species in freshwater ecosystems that is routinely exposed to a range of anthropogenic and natural stressors. With a fully sequenced genome, a well-understood life history and ecology, and an extensive library of responses to toxicity, Daphnia serves as an ideal model organism for studying the impact of environmental stressors on genomic stability.
View Article and Find Full Text PDFFuture Microbiol
December 2024
Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
Aims: A notable scarcity of research has focused on examining alterations in gut microbiota and its metabolites within tacrolimus (TAC)-induced diabetes models.
Methods: Tacrolimus-induced changes in glucose and lipid metabolism indices were analyzed through different routes of administration. The potential role of gut microbiota and its metabolites in TAC-induced diabetes was investigated using 16S rRNA sequencing and non-targeted metabolomics.
Biotechnol J
December 2024
Department of Biomedical Engineering, Tulane University, New Orleans, USA.
Microphysiological systems (MPS) containing perfusable vascular beds unlock the ability to model tissue-scale elements of vascular physiology and disease in vitro. Access to inexpensive stereolithography (SLA) 3D printers now enables benchtop fabrication of polydimethylsiloxane (PDMS) organ chips, eliminating the need for cleanroom access and microfabrication expertise, and can facilitate broader adoption of MPS approaches in preclinical research. Rapid prototyping of organ chip mold designs accelerates the processes of design, testing, and iteration, but geometric distortion and surface roughness of SLA resin prints can impede the development of standardizable manufacturing workflows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!