Objectives: Despite the growing rates of global obesity and the known positive associations between brown adipose tissue (BAT) and cardiovascular health, little is known about the metabolic effects of BAT activity in Samoans, a population at high risk of obesity and type II diabetes. Here we assessed the potential effects of inferred BAT activity on metabolic health markers in Samoan adults exposed to mild cold.

Methods: Using point-of-care finger prick technology we measured fasting glucose, total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels before and after 30 min of cold exposure among 61 individuals (38 females, 23 males, ages 31-54) from 'Upolu Island, Samoa. Respiratory quotient was measured by indirect calorimetry to determine substrate metabolism at room temperature and cold exposure.

Results: Fasting glucose levels decreased significantly (p < .001) after cold exposure while neither total cholesterol (p = .88), HDL (p = .312), nor LDL (p = .089) changed. Respiratory quotient decreased significantly (p = .009) between exposures, suggesting an increased preference for lipid metabolism as a response to cold.

Conclusions: The observed effects of inferred BAT activity on biomarkers suggest BAT activity utilizes both glucose and lipid-derived fatty acids as fuel for thermogenesis. Our work provides evidence for the beneficial metabolic effects of BAT and emphasizes the need for the population-specific development of metabolic treatments involving BAT to ensure the successful and equitable minimization of extreme consequences of obesity and metabolic health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939975PMC
http://dx.doi.org/10.1002/ajhb.23998DOI Listing

Publication Analysis

Top Keywords

brown adipose
8
adipose tissue
8
activity samoans
8
bat activity
8
fasting glucose
8
indication mixed
4
mixed glucose
4
glucose fatty
4
fatty acid
4
acid inferred
4

Similar Publications

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Background: Evaluating individual health outcomes does not capture co-morbidities children experience.

Purpose: We aimed to describe profiles of child neurodevelopment and anthropometry and identify their predictors.

Methods: Using data from 501 mother-child pairs (age 3-years) in the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a prospective cohort study, we developed phenotypic profiles by applying latent profile analysis to twelve neurodevelopmental and anthropometric traits.

View Article and Find Full Text PDF

Background: Lipodystrophy encompasses a group of rare disorders associated with severe metabolic disease. These disorders are defined by abnormal fat distribution, with near-total (generalized lipodystrophy, GL) or partial (partial lipodystrophy, PL; i.e.

View Article and Find Full Text PDF

Chronic low-dose REV-ERBs agonist SR9009 mitigates constant light-induced weight gain and insulin resistance via adipogenesis modulation.

Biomed J

January 2025

Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:

Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.

View Article and Find Full Text PDF

4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.

Phytomedicine

December 2024

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.

Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!