Background: The gastrointestinal microbiota is an important line of defense against colonization with antimicrobial resistant (AR) bacteria. In this post hoc analysis of the phase 3 ECOSPOR III trial, we assessed impact of a microbiota-based oral therapeutic (fecal microbiota spores, live; VOWST Oral Spores [VOS], formerly SER-109]; Seres Therapeutics) compared with placebo, on AR gene (ARG) abundance in patients with recurrent Clostridioides difficile infection (rCDI).

Methods: Adults with rCDI were randomized to receive VOS or placebo orally for 3 days following standard-of-care antibiotics. ARG and taxonomic profiles were generated using whole metagenomic sequencing of stool at baseline and weeks 1, 2, 8, and 24 posttreatment.

Results: Baseline (n = 151) and serial posttreatment stool samples collected through 24 weeks (total N = 472) from 182 patients (59.9% female; mean age: 65.5 years) in ECOSPOR III as well as 68 stool samples obtained at a single time point from a healthy cohort were analyzed. Baseline ARG abundance was similar between arms and significantly elevated versus the healthy cohort. By week 1, there was a greater decline in ARG abundance in VOS versus placebo (P = .003) in association with marked decline of Proteobacteria and repletion of spore-forming Firmicutes, as compared with baseline. We observed abundance of Proteobacteria and non-spore-forming Firmicutes were associated with ARG abundance, while spore-forming Firmicutes abundance was negatively associated.

Conclusions: This proof-of-concept analysis suggests that microbiome remodeling with Firmicutes spores may be a potential novel approach to reduce ARG colonization in the gastrointestinal tract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006105PMC
http://dx.doi.org/10.1093/cid/ciad636DOI Listing

Publication Analysis

Top Keywords

arg abundance
16
patients recurrent
8
recurrent clostridioides
8
clostridioides difficile
8
difficile infection
8
ecospor iii
8
stool samples
8
healthy cohort
8
spore-forming firmicutes
8
abundance
7

Similar Publications

Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits.

Microbiome

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.

View Article and Find Full Text PDF

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.

View Article and Find Full Text PDF

Longitudinal metagenomic analysis on antibiotic resistome, mobilome, and microbiome of river ecosystems in a sub-tropical metropolitan city.

Water Res

January 2025

Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; School of Public Health, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, China. Electronic address:

Rivers play an important role as reservoirs and sinks for antibiotic resistance genes (ARGs). However, it remains underexplored for the resistome and associated mobilome in river ecosystems, and hosts of riverine ARGs particularly the pathogenic ones are rarely studied. This study for the first time conducted a longitudinal metagenomic analysis to unveil the resistome, mobilome, and microbiome in river water, by collecting samples from 16 rivers in Hong Kong over a three-year period and using both short-read and long-read sequencing.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!