In trace fear conditioning, the prelimbic cortex exhibits persistent activity during the interval between the conditioned and unconditioned stimuli, which maintains a conditioned stimulus representation. Regions cooperating for this function or encoding the conditioned stimulus before the interval could send inputs to the prelimbic cortex, supporting learning. The basolateral amygdala has conditioned stimulus- and unconditioned stimulus-responsive neurons, convergently activated. The prelimbic cortex could directly project to the basolateral amygdala to associate the transient memory of the conditioned stimulus with the unconditioned stimulus. We investigated the neuronal circuit supporting temporal associations using contextual fear conditioning with a 5-s interval, in which 5 s separates the contextual conditioned stimulus from the unconditioned stimulus. Injecting retrobeads, we quantified c-Fos in prelimbic cortex- or basolateral amygdala-projecting neurons from 9 regions after contextual fear conditioning with a 5-s interval or contextual fear conditioning, in which the conditioned and unconditioned stimuli overlap. The contextual fear conditioning with a 5-s interval activated ventral CA1 and perirhinal cortex neurons projecting to the prelimbic cortex and prelimbic cortex neurons projecting to basolateral amygdala. Both fear conditioning activated ventral CA1 and lateral entorhinal cortex neurons projecting to basolateral amygdala and basolateral amygdala neurons projecting to prelimbic cortex. The perirhinal cortex → prelimbic cortex and ventral CA1 → prelimbic cortex connections are the first identified prelimbic cortex afferent projections participating in temporal associations. These results help to understand time-linked memories, a process required in episodic and working memories.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhad375DOI Listing

Publication Analysis

Top Keywords

prelimbic cortex
36
basolateral amygdala
24
fear conditioning
24
conditioned stimulus
16
contextual fear
16
neurons projecting
16
cortex
14
ventral ca1
12
conditioning 5-s
12
5-s interval
12

Similar Publications

Being part of a social structure offers chances for social learning vital for survival and reproduction. Nevertheless, studying the neural mechanisms of social learning under laboratory conditions remains challenging. To investigate the impact of socially transmitted information about rewards on individual behavior, we used Eco-HAB, an automated system monitoring the voluntary behavior of group-housed mice under seminaturalistic conditions.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex.

View Article and Find Full Text PDF

Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males.

View Article and Find Full Text PDF

Background: Early life stress (ELS) during the stress hypo-responsive period (SHRP) alters the curiosity-like behavior later during adolescence. Previous studies have shown maternal separation (MS) stress-induced heightened curiosity and associated risk-taking behavior in the object retrieval task (ORT). However, the neural correlates of curiosity in adolescent rats predisposed to early life stress remain unexplored.

View Article and Find Full Text PDF

Prefrontal serotonin depletion delays reversal learning and increases theta synchronization of the infralimbic-prelimbic-orbitofrontal prefrontal cortex circuit.

Front Pharmacol

December 2024

Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico.

Introduction: Prefrontal serotonin plays a role in the expression of flexible behavior during reversal learning tasks as its depletion delays reversal learning. However, the mechanisms by which serotonin modulates the prefrontal cortex functions during reversal learning remain unclear. Nevertheless, serotonin has been shown to modulate theta activity during spatial learning and memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!