Purpose: To compare the effect of different pre-cementation surface treatments and bonding protocols on the retention force of additively manufactured (AM) implant-supported interim crowns.
Material And Methods: A total of 50 AM interim crowns (Temporary CB resin) were cemented on implant abutments. Five groups (n = 10) were established based on the different surface pre-treatments performed in the intaglio surface of the specimens: no surface pre-treatment (Group C or control), air-abraded with 50-μm aluminium oxide particles (Group AP) air-abraded with 50-μm aluminium oxide particles followed by the application of silane (Group AMP), silane (Group MP), and air-abraded with 30 μm silica-coated aluminum oxide particles followed by the application of silane (Group CMP). Each specimen was cemented into an implant abutment using a composite resin cement (Rely X Unicem2). Afterward, the specimens underwent retention testing with a Universal Instron machine. Pull-off forces (N) and modes of failure were registered. Statistical analysis was performed using Mann-Whitney U tests with Bonferroni corrections for multiple tests (α = 0.05).
Results: The median retention force values were 233.27 ±79.28 N for Group Control, 398.59 ±68.59 N for Group MP, 303.21 ±116.80 N for Group AMP, 349.31 ±167.73 N for Group CMP, and 219.85 ± 55.88 N for Group AP. The pull-off forces were significantly greater for Group MP, while the differences between the remaining groups were not statistically significant (P > 0.05). Group AP showed the lowest retention force values among all the groups. Failure modes after the pull-off testing were predominantly adhesive and substrate failure of the AM interim material.
Conclusions: The surface treatment of the intaglio AM crown tested significantly influenced the retention force values measured. Pre-treatment with an MDP-containing silane improved the retentive force values computed, whereas pre-treatment with 50-μm AlO air-particle abrasion alone is not recommended prior to cementation on a titanium-based implant abutment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jopr.13783 | DOI Listing |
Water Res
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Faculty of Dentistry, British University in Egypt (BUE), Shorouk, Egypt.
Purpose: This study aimed to compare different treatment modalities to correct ill-fitted maxillary complete denture either by the conventional relining method or by scanning the relining impression and digitally construct a new denture regarding patient satisfaction, denture retention, and adaptation.
Materials And Methods: Twelve edentulous patients suffering from loose maxillary complete dentures were selected, dentures' borders and fitting surfaces were prepared, and relining impressions were taken, the impressions were scanned and the STL files were used for CAD/CAM milling ( computer aided designing/ computer aided manufacturing) of new maxillary dentures (Group A), then the relining impression went through the conventional laboratory steps to fabricate (Group B) maxillary dentures. Both groups were evaluated regarding patient satisfaction by a specially designed questionnaire, retention values were measured by a digital force gauge at denture insertion appointment and two weeks later, geomagic software was used to evaluate dentures adaptation to oral tissues.
ACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFEur J Dent
December 2024
Dental Faculty, Alma Mater Europaea Campus College "Rezonanca," Prishtina, Republic of Kosovo.
Objectives: To compare the retention and patient satisfaction of attachment-retained versus clasp-retained removable partial dentures (RPDs) over time and to evaluate the impact of retention force on patient satisfaction.
Materials And Methods: This study included 107 patients with 130 RPDs at the University Dentistry Clinical Center, Prishtina, Kosovo. Patients were divided into two groups: clasp-retained RPDs ( = 79) and attachment-retained RPDs ( = 51).
Anal Chem
January 2025
Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea.
Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!