Mucus plugging and non-resolving inflammation are inherent features of cystic fibrosis (CF) that may lead to progressive lung disease and exercise intolerance, which are the main causes of morbidity and mortality for people with CF. Therefore, understanding the influence of mucus on basic mechanisms underlying the inflammatory response and identifying strategies to resolve mucus-driven airway inflammation and consequent morbidity in CF are of wide interest. Here, we investigated the effects of the proresolving lipid mediator resolvin (Rv) D1 on mucus-related inflammation as a proof-of-concept to alleviate the burden of lung disease and restore exercise intolerance in CF. We tested the effects of RvD1 on inflammatory responses of human organotypic airways and leukocytes to CF mucus and of humanized mice expressing the epithelial Na + channel (βENaC-Tg) having CF-like mucus obstruction, lung disease, and physical exercise intolerance. RvD1 reduced pathogenic phenotypes of CF-airway supernatant (ASN)-stimulated human neutrophils, including loss of L-selectin shedding and CD16. RNASeq analysis identified select transcripts and pathways regulated by RvD1 in ASN-stimulated CF bronchial epithelial cells that are involved in sugar metabolism, NF-κB activation and inflammation, and response to stress. In in vivo inflammation using βENaC TG mice, RvD1 reduced total leukocytes, PMN, and interstitial Siglec-MΦ when given at 6-8 weeks of age, and in older mice at 10-12 weeks of age, along with the decrease of pro-inflammatory chemokines and increase of anti-inflammatory IL-10. Furthermore, RvD1 treatment promoted the resolution of pulmonary exacerbation caused by Pseudomonas aeruginosa infection and significantly enhanced physical activity and energy expenditure associated with mucus obstruction, which was impaired in βENaC-Tg mice compared with wild-type. These results demonstrate that RvD1 can rectify features of CF and offer proof-of-concept for its therapeutic application in this and other muco-obstructive lung diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202301495R | DOI Listing |
Sci Rep
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, GC University, Lahore, Pakistan.
In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!