A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3'sialyllactose and 6'sialyllactose enhance performance in endurance-type exercise through metabolic adaptation. | LitMetric

Human milk oligosaccharides (HMOs) belong to a group of multifunctional glycans that are abundantly present in human breast milk. While health effects of neutral oligosaccharides have been investigated extensively, a lot remains unknown regarding health effects of acidic oligosaccharides, such as the two sialyllactoses (SLs), 3'sialyllactose (3'SL), and 6'sialyllactose (6'SL). We utilized () to investigate the effects of SLs on exercise performance. Using swimming as an endurance-type exercise, we found that SLs decrease exhaustion, signifying an increase in endurance that is strongest for 6'SL. Through an unbiased metabolomics approach, we identified changes in energy metabolism that correlated with endurance performance. Further investigation suggested that these metabolic changes were related to adaptations of muscle mitochondria that facilitated a shift from beta oxidation to glycogenolysis during exercise. We found that the effect of SLs on endurance performance required AMPK- () and adenosine receptor () signaling. We propose a model where SLs alter the metabolic status in the gut, causing a signal from the intestine to the nervous system toward muscle cells, where metabolic adaptation increases exercise performance. Together, our results underline the potential of SLs in exercise-associated health and contribute to our understanding of the molecular processes involved in nutritionally-induced health benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563706PMC
http://dx.doi.org/10.1002/fsn3.3559DOI Listing

Publication Analysis

Top Keywords

endurance-type exercise
8
metabolic adaptation
8
health effects
8
exercise performance
8
exercise sls
8
endurance performance
8
sls
6
performance
5
exercise
5
3'sialyllactose 6'sialyllactose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!