A hybrid approach to previously excluded, expanding internal iliac artery aneurysms.

J Vasc Surg Cases Innov Tech

Division of Vascular Surgery, Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM.

Published: December 2023

Previously excluded internal iliac artery (IIA) aneurysms can continue to expand and pose a risk of rupture. In this case series, we present three patients with previously excluded, expanding IIA aneurysms after endovascular stent coverage or open surgical ligation of the proximal IIA. We describe a hybrid approach to treat these patients safely and effectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562858PMC
http://dx.doi.org/10.1016/j.jvscit.2023.101313DOI Listing

Publication Analysis

Top Keywords

hybrid approach
8
excluded expanding
8
internal iliac
8
iliac artery
8
iia aneurysms
8
approach excluded
4
expanding internal
4
artery aneurysms
4
aneurysms excluded
4
excluded internal
4

Similar Publications

Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases.

J Control Release

December 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:

Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.

View Article and Find Full Text PDF

Unveiling the self-assembly process of gellan-chitosan complexes through a combination of atomistic simulations and experiments.

Int J Biol Macromol

December 2024

Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Electronic address:

Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.

View Article and Find Full Text PDF

Full-arch implant rehabilitation in extremely atrophic edentulous mandibles is still challenging due to the high risk of fracture and the limited bone availability. The approach proposes using short implants with immediate loading for final prostheses as a treatment option, which offers shorter treatment times and fewer invasive procedures. A 66-year-old female patient with an edentulous mandible and severe alveolar bone resorption was treated with four short implants in the interforaminal area.

View Article and Find Full Text PDF

A Bayesian Hybrid Design With Borrowing From Historical Study.

Pharm Stat

December 2024

Biostatistics, Daiichi Sankyo Inc, Basking Ridge, USA.

In early phase drug development of combination therapy, the primary objective is to preliminarily assess whether there is additive activity from a novel agent when combined with an established monotherapy. Due to potential feasibility issues for conducting a large randomized study, uncontrolled single-arm trials have been the mainstream approach in cancer clinical trials. However, such trials often present significant challenges in deciding whether to proceed to the next phase of development due to the lack of randomization in traditional two-arm trials.

View Article and Find Full Text PDF

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!