: hybrid nanofluids have superior thermal efficiency and physical durability in contrast to regular nanofluids. The stagnation point flow of MHD micropolar hybrid nanofluids over a deformable sheet with viscous dissipation is investigated. : the controlling partial differential equations are converted to nonlinear ordinary differential equations using the transmuted similarity, and are subsequently solved using the bvp4c solver in MATLAB. The hybrid nanofluids consist of aluminum and copper nanoparticles, dispersed in a base fluid of water. : multiple solutions are obtained in the given problem for the case of shrinking as well as for the stretching sheet due to the variation in several influential parameters. Non-unique solutions, generally, exist for the case of shrinking sheets. In addition, the first branch solution is physically stable and acceptable according to the stability analysis. The friction factor is higher for the branch of the first solution and lower in the second branch due to the higher magnetic parameters, while the opposite behavior is seen in the case of the local heat transfer rate. : the novelty of this model is that it finds multiple solutions in the presence of Cu and AlO nanoparticles and also performs the stability analysis. In general, non-unique solutions exist for the phenomenon of shrinking sheets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563849PMC
http://dx.doi.org/10.1039/d3na00675aDOI Listing

Publication Analysis

Top Keywords

hybrid nanofluids
16
stability analysis
12
heat transfer
8
micropolar hybrid
8
differential equations
8
multiple solutions
8
case shrinking
8
non-unique solutions
8
shrinking sheets
8
branch solution
8

Similar Publications

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Linear Enhanced 3D Nanofluid Force-Electric Conversion Device.

Adv Mater

January 2025

Hubei key laboratory of energy storage and power battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.

The inherent trade-off between permeability and selectivity has constrained further improvement of passive linear force-electric conversion performance in nanofluidic pressure sensors. To overcome this limitation, a 3D nanofluidic membrane with high mechanical strength utilizing aramid nanofibers/carbon nanofiber (ANF/CNF) dual crosslinking is developed. Due to the abundant surface functional groups of CNF and the high mechanical strength of ANF, this large-scale integrated 3D nanofluidic membrane exhibits advantages of high flux, high porosity, and short ion transport path, demonstrating superior force-electric response compared to conventional 1D and 2D configurations.

View Article and Find Full Text PDF

The current research deals with analytical analysis of Marangoni convection on ethylene glycol base hybrid nanofluid two-dimension flow with viscous dissipation through a porous medium, which have some important application in mechanical, civil, electronics, and chemical engineering. Two types of nanoparticles one is sliver and other is graphene oxide and ethylene glycol is used as base fluid in this research work. The authors applied appropriate transformations to convert a collection of dimension form of nonlinear partial differential equations to dimensionless form of nonlinear ordinary differential equations.

View Article and Find Full Text PDF

Optimizing CNC turning of AISI D3 tool steel using Al₂O₃/graphene nanofluid and machine learning algorithms.

Heliyon

December 2024

School of Mechanical Engineering, Institute of Technology, Wallaga University, P.O. Box 395, Nekemte, Ethiopia.

Turning AISI (American Iron and Steel Institute) D3 tool steel can be challenging due to a lack of optimal process parameters and proper coolant application to achieve high surface quality and temperature control. Machine learning helps in predicting the optimal parameters, whereas nanofluids enhance cooling efficiency while preserving both the tool and the workpiece. This work intends to utilize advanced machine learning approaches to optimize process parameters with the application of hybrid nanofluids (AlO/graphene) during the CNC turning of AISI D3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!