In order to preserve our livelihood for future generations, responsible use of plastics in a climate-neutral and circular economy has to be developed so that plastics can be used in an environmentally friendly way by future generations. The prerequisite is that bioplastic polymers such as polylactic acid (PLA) can be efficiently recycled from petrochemical based plastic. Here, a concept in which accelerated PLA degradation in the mixed suspension of PLA and polystyrene (PS) nanoparticles has been achieved through an engineered material binding peptide. After comparison of twenty material binding peptides, Cg-Def is selected due to its PLA binding specificity. Finally, a suitable high-throughput screening system is developed for enhancing material-specific binding toward PLA in presence of PS. Through KnowVolution campaign, a variant Cg-Def YH (L9Y/S19H) with 2.0-fold improved PLA binding specificity compared to PS is generated. Contact angle and surface plasmon resonance measurements validated higher surface coverage of Cg-Def YH on PLA surface and the fusion of Cg-Def YH with PLA degrading enzyme confirmed the accelerated PLA depolymerization (two times higher than only enzyme) in mixed PLA/PS plastics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564037PMC
http://dx.doi.org/10.1021/acscatal.3c02142DOI Listing

Publication Analysis

Top Keywords

material binding
12
pla
9
binding peptide
8
degradation mixed
8
future generations
8
accelerated pla
8
pla binding
8
binding specificity
8
cg-def pla
8
binding
6

Similar Publications

Peri-centrosomal localization of small interfering RNAs in C. elegans.

Sci China Life Sci

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.

The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.

View Article and Find Full Text PDF

Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane.

J Membr Biol

January 2025

School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.

Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!