In this study, the chemical reduction method was applied to synthesize silver nanoparticles used to prepare conductive inks. The two variables of polyvinylpyrrolidone (PVP)- mole in the 0.01-0.03 mol range and hydrazine reducing mole in the 0.1-0.5 mol range, along with constants such as precursor mole (silver nitrate), complexing mole (ethylene diamine) and solvent mole (water), were used. Nine random samples proposed by the Design Expert software were examined and studied. X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS) were then used to characterize and evaluate the synthesized nanoparticles. According to the results obtained by XRD, FE-SEM and TEM analyses, the sample with 0.025 mol and 0.3 mol PVP had the minimum size of silver nanoparticles, which was around 20 nm, so it was chosen as the optimal sample for further research. The conductive ink was also prepared with the optimal sample of silver nanoparticles in 40% by weight and then characterized and evaluated by applying ultraviolet-visible (UV-Vis), simultaneous thermal analysis (STA), FE-SEM and electrical conductivity analysis. Finally, conductive ink was applied to polyethylene terephthalate (PET) and acrylonitrile butadiene styrene (ABS) substrates. The surface electrical resistance of conductive ink on PET and ABS substrates was then measured at about 6.4 Ω and 2.2 Ω, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562916PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e20548DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
16
conductive ink
12
conductive inks
8
chemical reduction
8
reduction method
8
electron microscopy
8
optimal sample
8
abs substrates
8
nanoparticles
5
conductive
5

Similar Publications

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Multifunctional Biological Performance of Electrospun PCL Scaffolds Formulated with Silver Sulfide Nanoparticles.

Polymers (Basel)

January 2025

Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.

Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.

View Article and Find Full Text PDF

This review evaluates the cytotoxic potential of the genus, with a focus on , , and . These species, known for their diverse phytochemical compositions, exhibit notable cytotoxic effects that suggest their utility in natural cancer treatments. Compounds such as quercetin, kaempferol, and sesbagrandiforian A and B have been highlighted for their strong antioxidant and antiproliferative effects, further emphasizing their therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!