Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3124
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we propose a two-step pervaporation system with a high-silica CHA (chabazite) membrane, which has sufficient resistance to water and acid, to demonstrate the extraction and condensation of the formic acid formed by electroreduction of CO. The kinetic diameters of water and formic acid are similar and smaller than the pore size of CHA, while the hydrated electrolyte ions (e.g., K and Cl) are larger than the pore size of CHA. Consequently, the electrolyte ions are separated from the mixture of water and formic acid in the first desalination process, and then water molecules are easily removed from the mixture in the second dehydration process. From 300 ml of an approximately 3 wt% formic acid aqueous solution containing 0.5 M KCl, 10 ml of 18.2 wt% formic acid was obtained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562771 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e20259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!