Next-generation-sequencing (NGS) becomes increasingly important for laboratories tasked with the detection of genetically modified organisms (GMOs) in food, feed and seeds. Its implementation into standardized workflows demands reliable intra- and inter-laboratory reproducibility. Here, we analyze the reproducibility of short- and long-read targeted NGS and long-read whole genome sequencing (WGS) data between three independent laboratories. Replicate samples were submitted for sequencing and comparatively analyzed. The targeted-NGS-samples consisted of oil seed rape (OSR) sampled from a commodity shipment spiked with a genome edited (GE) OSR and the WGS-samples consisted of leaf material from the GMOs' parental line. All laboratories delivered highly reproducible high-quality targeted NGS data with little variation. The detection of GMO-related sequences works well regardless of the facility, while the mapping to the complex genome is superior using long read data. Long read WGS is currently not suitable for routine use in enforcement laboratories, due to a large inter-laboratory variation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562171 | PMC |
http://dx.doi.org/10.1016/j.fochms.2023.100182 | DOI Listing |
Biosci Microbiota Food Health
September 2024
Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .
View Article and Find Full Text PDFFront Plant Sci
December 2024
SD Guthrie Research Sdn. Bhd., Banting, Selangor Darul Ehsan, Malaysia.
Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFThe integration of conventional omics data such as genomics and transcriptomics data into artificial intelligence models has advanced significantly in recent years; however, their low applicability in clinical contexts, due to the high complexity of models, has been limited in their direct use inpatients. We integrated classic omics, including DNA mutation and RNA gene expression, added a novel focus on promising omics methods based on A>I(G) RNA editing, and developed a drug response prediction model. We analyzed 104 patients from the Breast Cancer Genome-Guided Therapy Study (NCT02022202).
View Article and Find Full Text PDFBinding of transcription factors (TFs) at gene regulatory elements controls cellular epigenetic state and gene expression. Current genome-wide chromatin profiling approaches have inherently limited resolution, complicating assessment of TF occupancy and co-occupancy, especially at individual alleles. In this work, we introduce Accessible Chromatin by Cytosine Editing Site Sequencing with ATAC-seq (ACCESS-ATAC), which harnesses a double-stranded DNA cytosine deaminase (Ddd) enzyme to stencil TF binding locations within accessible chromatin regions.
View Article and Find Full Text PDFAs the toolbox of base editors (BEs) expands, selecting appropriate BE and guide RNA (gRNA) to achieve optimal editing efficiency and outcome for a given target becomes challenging. Here, we construct a set of 10 adenine and cytosine BEs with high activity and broad targeting scope, and comprehensively evaluate their editing profiles and properties head-to-head with 34,040 BE-gRNA-target combinations using genomically integrated long targets and tiling gRNA strategies. Interestingly, we observe widespread non-canonical protospacer adjacent motifs (PAMs) for these BEs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!