Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Patients with type 2 diabetes mellitus (T2DM) are at a heightened risk of living with multiple comorbidities. However, the comprehension of the multimorbidity characteristics of T2DM is still scarce. This study aims to illuminate T2DM's prevalent comorbidities and their interrelationships using network analysis. Using electronic medical records (EMRs) from 496,408 Chinese patients with T2DM, we constructed male and female global multimorbidity networks and age- and sex-specific networks. Employing diverse network metrics, we assessed the structural properties of these networks. Furthermore, we identified hub, root, and burst diseases within these networks while scrutinizing their temporal trends. Our findings uncover interconnected T2DM comorbidities manifesting as emergence in clusters or age-specific outbreaks and core diseases in each sex that necessitate timely detection and intervention. This data-driven methodology offers a comprehensive comprehension of T2DM's multimorbidity, providing hypotheses for clinical considerations in the prevention and therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562779 | PMC |
http://dx.doi.org/10.1016/j.isci.2023.107979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!