In order to investigate the synergistic improving effect of lutein (LUT) and epigallocatechin-3-gallate (EGCG) treatment on retinitis pigmentosa (RP), an -methyl--nitrosourea (MNU)-induced mouse model was conducted in the present study. Compared to the LUT alone treatment group, in the LUT combined with EGCG (LUT-EGCG) treatment group, the accumulation content of LUT was significantly increased by 50.24% in the liver. The morphological results indicated that LUT-EGCG treatment significantly improved the retina structure with the thickness of the outer nuclear layer restored to 185.28 ± 0.29 μm, showing no significant difference compared to the control group. The LUT-EGCG treatment also increased the production of short-chain fatty acids, such as acetic and propionic acids. Compared with the LUT alone treatment, the LUT-EGCG treatment significantly increased the relative abundance of and . RT-qPCR results indicated that LUT-EGCG treatment significantly increased the antiapoptotic gene Bcl-2 expression. In addition, the expression of IL-6 was significantly down-regulated in the LUT-EGCG group, while there was no significance in NF-κβ, TNF-α, IL-1β, and IL-18 compared with the LUT group. Correlation analysis supported the conclusion that LUT combined with EGCG may improve RP by modulating antiapoptotic gene expression and regulating the abundance of gut microbiota. However, the underlying mechanism still needs further research.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3fo02716cDOI Listing

Publication Analysis

Top Keywords

lut-egcg treatment
20
combined egcg
12
compared lut
12
treatment increased
12
retinitis pigmentosa
8
treatment
8
lut treatment
8
treatment group
8
lut combined
8
indicated lut-egcg
8

Similar Publications

In order to investigate the synergistic improving effect of lutein (LUT) and epigallocatechin-3-gallate (EGCG) treatment on retinitis pigmentosa (RP), an -methyl--nitrosourea (MNU)-induced mouse model was conducted in the present study. Compared to the LUT alone treatment group, in the LUT combined with EGCG (LUT-EGCG) treatment group, the accumulation content of LUT was significantly increased by 50.24% in the liver.

View Article and Find Full Text PDF

Modulatory influences of antiviral bioactive compounds on cell viability, mRNA and protein expression of cytochrome P450 3A4 and P-glycoprotein in HepG2 and HEK293 cells.

Bioorg Chem

February 2021

KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Medical Campus, Durban 4001, South Africa. Electronic address:

The induction of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (ABCB1) influence drug plasma, and eventually decreases the drugs' therapeutic effects. The effects of Plant-derived compounds (PCs) on drug-metabolising proteins are largely unknown. This study investigated the cytotoxicity, cell viability profiles and regulatory influences of four PCs (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) on the mRNA and protein expressions of CYP3A4 and ABCB1 in HepG2 and HEK293 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!