AI Article Synopsis

  • Liang-Yan-Yi-Zhen-San (LYYZS) is an ancient Chinese herbal formula that promotes the browning of white adipose tissue, which is important for fat metabolism.
  • The study identified 52 active ingredients within LYYZS and screened 1,560 ingredient-related targets linked to its effects, while also analyzing gene expression changes in mice.
  • The network pharmacology analysis revealed 10 key active ingredients that contribute to browning, demonstrating a comprehensive approach to identifying substances that enhance fat burning.

Article Abstract

We have previously shown that Liang-Yan-Yi-Zhen-San (LYYZS), an ancient Chinese herbal formula, can promote the browning of white adipose tissue. In this study, we sought to determine which active ingredients of LYYZS mediated its effects on the browning of white adipose tissue. Employing ultra-high performance liquid chromatography-Q-Exactive HF mass spectrometry, a total of 52 LYYZS ingredients were identified. On this basis, 1,560 ingredient-related targets of LYYZS were screened using the HERB databases. Meanwhile, RNA sequencing analysis of the inguinal white adipose tissue of mice produced a total of 3148 genes that were significantly differentially expressed following LYYZS treatment and differentially expressed genes regarded as browning-related targets. Through the network pharmacological analysis, a total of 136 intersection targets were obtained and an ingredient-target-pathway network was established. According to network pharmacology analysis, 10 ingredients containing trans-cinnamaldehyde, genistein, daidzein, calycosin, arginine, coumarin, oleic acid, isoleucine, palmitic acid and tyrosine were regarded as active ingredients of browning of white adipose tissue. Integrated evaluation using chemical analysis, transcriptomics and network pharmacology provides an efficient strategy for discovering the active ingredients involved in how LYYZS promotes the browning of white adipose tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.5734DOI Listing

Publication Analysis

Top Keywords

white adipose
24
adipose tissue
24
browning white
20
network pharmacology
12
active ingredients
12
transcriptomics network
8
promotes browning
8
differentially expressed
8
white
6
adipose
6

Similar Publications

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

White adipose tissues and skeletal muscles as a target of chrysin during the treatment of obesity in rats.

Sci Rep

January 2025

Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, EL-Hadara, POB 21561, Alexandria, Egypt.

Obesity is a rapidly growing epidemic that continues to be a major severe health problem due to its association with various adverse health consequences. Since 1975, the WHO estimates that the prevalence of obesity has tripled globally. Chrysin is a flavone that is mostly found in the Passiflore species of plants and in propolis.

View Article and Find Full Text PDF

Adipose ZFP36 protects against diet-induced obesity and insulin resistance.

Metabolism

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Aims: Obesity, as a worldwide healthcare problem, has become more prevalent. ZFP36 is a well-known RNA-binding protein and involved in the posttranscriptional regulation of many physiological processes. Whether the adipose ZFP36 plays a role in obesity and insulin resistance remains unclear.

View Article and Find Full Text PDF

NMR spectroscopy derived plasma biomarkers of inflammation in human populations: Influences of age, sex and adiposity.

PLoS One

January 2025

Australian National Phenome Center and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.

Understanding the distribution and variation in inflammatory markers is crucial for advancing our knowledge of inflammatory processes and evaluating their clinical utility in diagnosing and monitoring acute and chronic disease. 1H NMR spectroscopy of blood plasma and serum was applied to measure a composite panel of inflammatory markers based on acute phase glycoprotein signals (GlycA and GlycB) and sub-regions of the lipoprotein derived Supramolecular Phospholipid Composite signals (SPC1, SPC2 and SPC3) to establish normal ranges in two healthy, predominantly white cohorts from Australia (n = 398) and Spain (n = 80; ages 20-70 years). GlycA, GlycB, SPC1 and SPC3 were not significantly impacted by age or sex, but SPC2 (an HDL-related biomarker) was significantly higher in women across all age ranges by an average of 33.

View Article and Find Full Text PDF

Background: Immune-mediated inflammatory diseases (IMIDs) are a group of chronic conditions characterized by dysregulated immune responses and persistent inflammation. Rheumatoid arthritis (RA), spondyloarthritis (SpA), and ulcerative colitis (UC) exemplify prominent IMIDs, each presenting unique challenges for their management, that impact patient's quality of life (QoL). Obesity, marked by persistent low-grade inflammation, influences the progression, response to treatment, and clinical management of patients with RA, SpA, and UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!