Grapevine Trunk Diseases (GTD) are caused by a consortium of fungal pathogens that affect the biological functions of the vascular system of mature and young grapevines (Gramaje et al. 2018). We conducted surveys to profile GTD pathogens in California grapevine nurseries and collected 784 cuttings of cvs. Cabernet Sauvignon and Chardonnay grafted on 1103P rootstock. Several vines exhibited wood necrotic lesions and cankers at the graft union and the root ball (Figure 1A). Symptomatic wood tissues were cultured on PDA medium and after two weeks of incubation at room temperature (22°C), several known GTD pathogens were recovered. We also identified Rhizoctonia from 42 of the 784 vines (5.3% incidence) based on the morphological characteristics of a brown pigmented mycelium (Figure 1B), hyphae branched at a right angle with constrictions at the branch point (Figure 1C) and absence of spores (González García et al., 2006). A subsample of four isolates (DCHG2B, DCSG22R, JCSG9B, and JCHG12B) were randomly selected for further DNA-based taxonomic identification and pathogenicity evaluation to grapevine. The ITS and beta tubulin regions were amplified using the ITS1/ITS4 and B36F/B12R primer sets, respectively (González et al. 2006), and sequences were deposited in the NCBI database (Accession numbers: OR052655, OR052656, OR052657, OR052658 and OR059207, OR059208, OR059209, OR059210). Sequences displayed >99% and >96% identity with the respective ITS and beta tubulin sequences of the binucleate Rhizoctonia AG-G specimen C-653 (González et al. 2006). A phylogenetic tree constructed using the Neighbor-Joining method indicated a 100% bootstrap support with the binucleate Rhizoctonia AG-G (Figure 2). Pathogenicity of the binucleate AG-G Rhizoctonia were confirmed on two separate technical replicates using standard methods. For each replicate, one-year-old rootstock 1103P were wounded with sterile drill bits and inoculated with a single 5 mm diameter agar plug collected from Rhizoctonia growing cultures, while control vines were inoculated with sterile agar. The first replicate lasted 28 weeks with (DCHG2B, DCSG22R) inoculated on seven vines. The second bioassay lasted 24 weeks with two additional isolates (JCSG9B, JCHG12B) inoculated on twelve vines. Rhizoctonia-inoculated vines developed wood symptoms similar to those observed on cuttings in nurseries, with necrotic lesions lengths significantly longer than the controls (First replicate: 3.5 0.4 cm vs. 1.3 0.6 cm; Second replicate: 6.8 0.8 cm vs. 1.1 0.2 cm), based on one-way ANOVA statistical test (P value < 0.05). Rhizoctonia isolates recovery from wood necrotic lesions were confirmed by ITS sequencing, thereby fulfilling Koch's postulate. Several binucleate Rhizoctonia anastomosis groups, including AG-G, have been found to cause root rot and stem necrosis in plant nurseries (Aiello et al., 2017; Rinehart et al., 2007). Rhizoctonia has also been reported to be associated with grapevine nurseries in Europe (Pintos et al., 2018), South Africa (Halleen et al., 2003) and Australia (Walker, 1992). However, the multinucleate Rhizoctonia solani was the only species confirmed to cause root rot on grapevine (Walker, 1992). Our data suggests that the binucleate Rhizoctonia from the AG-G anastomosis group also cause wood necrosis in grapevine. Those findings warrant further studies on the complexity of Rhizoctonia anastomosis groups in nursery and their aggressiveness to grapevine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-09-23-1726-PDN | DOI Listing |
Heliyon
March 2024
Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Isolates of (AG-3 PT, AG-4 HG-I, AG-4 HG-II) and one binucleate sp. (BNR) belonging to AG-Bb were investigated for pathogenicity on tomato cultivar Mobil. The BNR isolate revealed the lowest virulence and it was used as biocontrol agent against AG-4 HG-II, which showed the highest virulence on tomato.
View Article and Find Full Text PDFArch Virol
January 2024
College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, 650214, China.
The complete genome sequence of a positive-sense single-stranded RNA (+ ssRNA) virus, Rhizoctonia beny-like virus 1 (RBLV1), isolated from binucleate Rhizoctonia AG-A strain A46, was determined. The RBLV1 genome is 10,280 nt in length and contains a short stretch of adenines at the 3' terminus. It contains a single open reading frame (ORF) encoding a 376.
View Article and Find Full Text PDFPlant Dis
November 2023
Xianlie middle road 100Yuexiu districtGuagnzhouGuangzhou, China, 510075;
Loquat, Rhaphiolepis loquata B.B.Liu & J.
View Article and Find Full Text PDFSci Rep
October 2023
Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Kraków, Poland.
The genus Rhizoctonia has been classified into two main groups according to the number of nuclei. Binucleate Rhizoctonia strains have two nuclei in each cell, whereas multinucleate Rhizoctonia fungi were observed to have a variable number of nuclei ranging from 4 to 16 in each cell. In the study, twelve Polish isolates were tested.
View Article and Find Full Text PDFPlant Dis
October 2023
University of California, Department of Botany and Plant Sciences, 3214 Batchelor Hall, Riverside, California, United States, 92521;
Grapevine Trunk Diseases (GTD) are caused by a consortium of fungal pathogens that affect the biological functions of the vascular system of mature and young grapevines (Gramaje et al. 2018). We conducted surveys to profile GTD pathogens in California grapevine nurseries and collected 784 cuttings of cvs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!